---
title: Stone duality for spectral locales
author: Ayberk Tosun
date-started: 2024-04-12
dates-updated: [2024-05-08, 2024-06-20]
---
This module will eventually contain the proof of Stone duality for spectral
locales. It currently contains the type equivalence, which will be extended to
the categorical equivalence in the future.
\begin{code}[hide]
{-# OPTIONS --safe --without-K --lossy-unification #-}
open import MLTT.Spartan hiding (𝟚; ₀; ₁)
open import UF.FunExt
open import UF.PropTrunc
open import UF.Size
open import UF.Subsingletons
open import UF.UA-FunExt
open import UF.Univalence
module Locales.StoneDuality.ForSpectralLocales
(ua : Univalence)
(pt : propositional-truncations-exist)
(sr : Set-Replacement pt)
where
private
fe : Fun-Ext
fe {𝓤} {𝓥} = univalence-gives-funext' 𝓤 𝓥 (ua 𝓤) (ua (𝓤 ⊔ 𝓥))
pe : Prop-Ext
pe {𝓤} = univalence-gives-propext (ua 𝓤)
open import Locales.Compactness.Definition pt fe
open import Locales.ContinuousMap.FrameHomomorphism-Definition pt fe
open import Locales.ContinuousMap.FrameHomomorphism-Properties pt fe
open import Locales.ContinuousMap.Homeomorphism-Definition pt fe
open import Locales.ContinuousMap.Homeomorphism-Properties ua pt sr
open import Locales.DistributiveLattice.Definition fe pt
open import Locales.DistributiveLattice.Isomorphism fe pt
open import Locales.DistributiveLattice.Isomorphism-Properties ua pt sr
open import Locales.DistributiveLattice.Spectrum fe pe pt
open import Locales.DistributiveLattice.Spectrum-Properties fe pe pt sr
open import Locales.Frame pt fe
open import Locales.SIP.DistributiveLatticeSIP ua pt sr
open import Locales.SIP.FrameSIP
open import Locales.SmallBasis pt fe sr
open import Locales.Spectrality.LatticeOfCompactOpens ua pt sr
open import Locales.Spectrality.LatticeOfCompactOpens-Duality ua pt sr
open import UF.Equiv
open import UF.Logic
open import UF.SubtypeClassifier
open AllCombinators pt fe
open FrameHomomorphismProperties
open FrameHomomorphisms
open Locale
\end{code}
We denote by `spec L` the spectrum (the locale defined by the frame of ideals)
of a distributive lattice `L`.
\begin{code}
open DefnOfFrameOfIdeal
spec : DistributiveLattice 𝓤 → Locale (𝓤 ⁺) 𝓤 𝓤
spec = spectrum
\end{code}
Recall that a locale `X` is called `spectral·` if it is homeomorphic to the
spectrum of some distributive lattice `L `.
\begin{code}
_ : (X : Locale (𝓤 ⁺) 𝓤 𝓤)
→ is-spectral· X = (Ǝ L ꞉ DistributiveLattice 𝓤 , X ≅c≅ spec L)
_ = λ _ → refl
\end{code}
This definition uses `∃` instead of `Σ`, because even though the distributive
lattice of compact opens is unique, the homeomorphism involved need not be.
Because `spec L` is a spectral locale (with a small basis), any locale `X` that
is homeomorphic to `spec L` for some distributive lattice `L` must be spectral.
\begin{code}
spectral·-implies-spectral-with-small-basis
: (X : Locale (𝓤 ⁺) 𝓤 𝓤)
→ is-spectral· X holds
→ is-spectral-with-small-basis ua X holds
spectral·-implies-spectral-with-small-basis {𝓤} X =
∥∥-rec (holds-is-prop (is-spectral-with-small-basis ua X)) †
where
open PropositionalTruncation pt
† : (Σ L ꞉ DistributiveLattice 𝓤 , X ≅c≅ spec L)
→ is-spectral-with-small-basis ua X holds
† (L , 𝒽) = transport (_holds ∘ is-spectral-with-small-basis ua) q 𝕤
where
open Spectrality L
p : 𝒪 (spec L) = 𝒪 X
p = isomorphic-frames-are-equal ua pt sr (𝒪 (spec L)) (𝒪 X) 𝒽
q : spec L = X
q = to-locale-= (spec L) X p
𝕤 : is-spectral-with-small-basis ua (spec L) holds
𝕤 = spec-L-is-spectral , spec-L-has-small-𝒦
\end{code}
Added on 2024-05-12.
The converse of this implication is proved in the module
`LatticeOfCompactOpens-Duality`.
\begin{code}
spectral-with-small-basis-implies-spectral·
: {𝓤 : Universe} (X : Locale (𝓤 ⁺) 𝓤 𝓤)
→ (is-spectral-with-small-basis ua X ⇒ is-spectral· X) holds
spectral-with-small-basis-implies-spectral· X σ = spectral-implies-spectral· X σ
\end{code}
We now explicitly record this logical equivalence.
\begin{code}
spectral-with-small-basis-iff-spectral·
: {𝓤 : Universe} (X : Locale (𝓤 ⁺) 𝓤 𝓤)
→ (is-spectral-with-small-basis ua X ⇔ is-spectral· X) holds
spectral-with-small-basis-iff-spectral· X = † , ‡
where
† = spectral-with-small-basis-implies-spectral· X
‡ = spectral·-implies-spectral-with-small-basis X
\end{code}
Added on 2024-06-20.
We now show that the type `Spectral-Locale 𝓤` is equivalent to the type
`DistributiveLattice 𝓤`.
Recall that the type of spectral locales is defined as:
\begin{code}
Spectral-Locale : (𝓤 : Universe) → 𝓤 ⁺⁺ ̇
Spectral-Locale 𝓤 =
Σ X ꞉ Locale (𝓤 ⁺) 𝓤 𝓤 , is-spectral-with-small-basis ua X holds
\end{code}
For any universe `𝓤`, the type `Spectral-Locale 𝓤` is equivalent to the type
`DistributiveLattice 𝓤`.
\begin{code}
spec-dlat-equivalence : (𝓤 : Universe) → Spectral-Locale 𝓤 ≃ DistributiveLattice 𝓤
spec-dlat-equivalence 𝓤 = sec , qinvs-are-equivs sec γ
where
open 𝒦-Duality₁
open 𝒦-Lattice
open DefnOfFrameOfIdeal
sec : Spectral-Locale 𝓤 → DistributiveLattice 𝓤
sec = uncurry ⦅_⦆ᶜ
ret : DistributiveLattice 𝓤 → Spectral-Locale 𝓤
ret L = spectrum L
, Spectrality.spec-L-is-spectral L
, Spectrality.spec-L-has-small-𝒦 L
† : ret ∘ sec ∼ id
† (X , σ) =
to-subtype-=
(holds-is-prop ∘ is-spectral-with-small-basis ua)
(homeomorphic-locales-are-equal (spec 𝒦X⁻) X 𝒽)
where
𝒦X⁻ : DistributiveLattice 𝓤
𝒦X⁻ = ⦅_⦆ᶜ X σ
𝒽 : spec 𝒦X⁻ ≅c≅ X
𝒽 = X-is-homeomorphic-to-spec-𝒦⁻X X σ
‡ : sec ∘ ret ∼ id
‡ L = isomorphic-distributive-lattices-are-equal (sec (ret L)) L iso
where
open 𝒦-Duality₂ L
iso : 𝒦⁻-spec-L ≅d≅ L
iso = ≅d-sym L 𝒦⁻-spec-L L-is-isomorphic-to-𝒦⁻-spec-L
γ : qinv sec
γ = ret , † , ‡
\end{code}