--------------------------------------------------------------------------------
title: Properties of locale homeomorphisms
author: Ayberk Tosun
date-started: 2024-04-18
--------------------------------------------------------------------------------
Some properties of locale homeomorphisms.
\begin{code}[hide]
{-# OPTIONS --safe --without-K #-}
open import MLTT.Spartan hiding (π; β; β)
open import UF.FunExt
open import UF.PropTrunc
open import UF.Size
open import UF.Subsingletons
open import UF.UA-FunExt
open import UF.Univalence
module Locales.ContinuousMap.Homeomorphism-Properties
(ua : Univalence)
(pt : propositional-truncations-exist)
(sr : Set-Replacement pt)
where
private
fe : Fun-Ext
fe {π€} {π₯} = univalence-gives-funext' π€ π₯ (ua π€) (ua (π€ β π₯))
pe : Prop-Ext
pe {π€} = univalence-gives-propext (ua π€)
open import Locales.ContinuousMap.FrameIsomorphism-Definition pt fe
open import Locales.ContinuousMap.Homeomorphism-Definition pt fe
open import Locales.Frame pt fe
open import Locales.SIP.FrameSIP ua pt sr
open import UF.Logic
open import UF.SubtypeClassifier
open AllCombinators pt fe
open Locale
\end{code}
Homeomorphic locales are equal.
\begin{code}
homeomorphic-locales-are-equal : (X Y : Locale (π€ βΊ) π€ π€) β X β
cβ
Y β X οΌ Y
homeomorphic-locales-are-equal X Y π½ = to-locale-οΌ Y X β β»ΒΉ
where
open FrameIsomorphisms
r : πͺ Y β
fβ
πͺ X
r = isomorphism-to-isomorphismα΅£
(πͺ Y)
(πͺ X)
(isomorphismα΅£-to-isomorphism (πͺ Y) (πͺ X) π½)
β : πͺ Y οΌ πͺ X
β = isomorphic-frames-are-equal (πͺ Y) (πͺ X) r
\end{code}
Transport lemma for homeomorphic locales.
\begin{code}
β
cβ
-transport : (X Y : Locale (π€ βΊ) π€ π€)
β (P : Locale (π€ βΊ) π€ π€ β Ξ© π£) β X β
cβ
Y β P X holds β P Y holds
β
cβ
-transport X Y P π½ = transport (_holds β P) p
where
p : X οΌ Y
p = homeomorphic-locales-are-equal X Y π½
\end{code}
Added on 2024-05-07.
Being homeomorphic is a symmetric relation.
\begin{code}
β
c-sym : (X Y : Locale (π€ βΊ) π€ π€) β X β
cβ
Y β Y β
cβ
X
β
c-sym X Y π½ =
record { π = π ; π = π ; π-cancels-π = π-cancels-π ; π-cancels-π = π-cancels-π}
where
open FrameIsomorphisms.Isomorphismα΅£ π½
\end{code}