---
title: Properties of distributive lattice isomorphisms
author: Ayberk Tosun
date-started: 2024-06-01
dates-updated: [2024-06-09]
---
In this module, we collect properties of distributive lattice isomorphisms.
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import MLTT.Spartan hiding (π; β; β)
open import UF.FunExt
open import UF.PropTrunc
open import UF.Size
open import UF.Subsingletons
open import UF.UA-FunExt
open import UF.Univalence
module Locales.DistributiveLattice.Isomorphism-Properties
(ua : Univalence)
(pt : propositional-truncations-exist)
(sr : Set-Replacement pt)
where
private
fe : Fun-Ext
fe {π€} {π₯} = univalence-gives-funext' π€ π₯ (ua π€) (ua (π€ β π₯))
pe : Prop-Ext
pe {π€} = univalence-gives-propext (ua π€)
open import Locales.DistributiveLattice.Definition fe pt
open import Locales.DistributiveLattice.Isomorphism fe pt
open import Locales.SIP.DistributiveLatticeSIP ua pt sr
open import UF.Logic
open AllCombinators pt fe renaming (_β§_ to _β§β_)
\end{code}
We work in a module parameterized by π€-distributive-lattices `K` and `L`.
\begin{code}
module DistributiveLatticeIsomorphismProperties
(K : DistributiveLattice π€)
(L : DistributiveLattice π€)
where
open DistributiveLatticeIsomorphisms K L
\end{code}
Transport lemma for distributive lattices.
\begin{code}
β
dβ
-transport : (K L : DistributiveLattice π€)
β (B : DistributiveLattice π€ β π£ Μ )
β K β
dβ
L
β B K
β B L
β
dβ
-transport K L B iso = transport B β
where
β : K οΌ L
β = isomorphic-distributive-lattices-are-equal K L iso
\end{code}
Added on 2024-06-09.
Distributive lattice isomorphisms are symmetric.
\begin{code}
β
d-sym : (K : DistributiveLattice π€)
β (L : DistributiveLattice π₯)
β K β
dβ
L β L β
dβ
K
β
d-sym K L πΎ =
record
{ π = π πΎ
; π = π πΎ
; r-cancels-s = s-cancels-r πΎ
; s-cancels-r = r-cancels-s πΎ
}
where
open DistributiveLatticeIsomorphisms.Isomorphismα΅α΅£
\end{code}
End of addition.