Tom de Jong, 4 June 2019
Updated 23 December 2021
Updated 12 and 14 June 2022
Updated 30 October 2023 (by Ayberk Tosun)
Updated 6 November 2023 (by Ayberk Tosun)
Updated 31 May 2024 (by Tom de Jong)
Updated 23 June 2024 (by Tom de Jong)
Updated 3 and 8 July 2024 (by Tom de Jong)
Index for the formalization of domain theory, briefly describing the contents of
each directory, ordered almost¹ alphabetically by directory name.
(¹ Basics is first.)
Several additional domain-theoretic formalization targets are listed at the end.
─────────────────────────────────────────────────────────────────────
This accompanies the PhD thesis
Domain Theory in Constructive and Predicative Univalent Foundations
Tom de Jong
School of Computer Science, University of Birmingham
https://etheses.bham.ac.uk/id/eprint/13401/
Updated versions:
https://arxiv.org/abs/2301.12405
https://tdejong.com/writings/phd-thesis.pdf
Submitted: 30 September 2022
Defended: 20 December 2022
Accepted: 1 February 2023
─────────────────────────────────────────────────────────────────────
\begin{code}
{-# OPTIONS --safe --without-K #-}
module DomainTheory.index where
import DomainTheory.Basics.Dcpo
import DomainTheory.Basics.Exponential
import DomainTheory.Basics.LeastFixedPoint
import DomainTheory.Basics.Miscelanea
import DomainTheory.Basics.Pointed
import DomainTheory.Basics.SupComplete
import DomainTheory.Basics.WayBelow
import DomainTheory.Basics.Curry
import DomainTheory.Basics.FunctionComposition
import DomainTheory.Basics.Products
import DomainTheory.Basics.ProductsContinuity
import DomainTheory.BasesAndContinuity.Bases
import DomainTheory.BasesAndContinuity.CompactBasis
import DomainTheory.BasesAndContinuity.Continuity
import DomainTheory.BasesAndContinuity.ContinuityDiscussion
import DomainTheory.BasesAndContinuity.ContinuityImpredicative
import DomainTheory.BasesAndContinuity.IndCompletion
import DomainTheory.BasesAndContinuity.StepFunctions
import DomainTheory.BasesAndContinuity.ScottDomain
import DomainTheory.Bilimits.Directed
import DomainTheory.Bilimits.Sequential
import DomainTheory.Bilimits.Dinfinity
import DomainTheory.Examples.IdlDyadics
import DomainTheory.Examples.LiftingLargeProposition
import DomainTheory.Examples.Omega
import DomainTheory.Examples.Ordinals
import DomainTheory.Examples.Powerset
import DomainTheory.IdealCompletion.IdealCompletion
import DomainTheory.IdealCompletion.Properties
import DomainTheory.IdealCompletion.Retracts
import DomainTheory.Lifting.LiftingDcpo
import DomainTheory.Lifting.LiftingSet
import DomainTheory.Lifting.LiftingSetAlgebraic
import DomainTheory.ScottModelOfPCF.PCF
import DomainTheory.ScottModelOfPCF.PCFCombinators
import DomainTheory.ScottModelOfPCF.ScottModelOfPCF
import DomainTheory.Taboos.ClassicalLiftingOfNaturalNumbers
import DomainTheory.Topology.ScottTopology
import DomainTheory.Topology.ScottTopologyProperties
import DomainTheory.Continuous-and-algebraic-domains
import DomainTheory.Part-I
import DomainTheory.Part-II
\end{code}
Additional formalization targets
────────────────────────────────
The Formalization chapter in the aforementioned PhD thesis
(https://arxiv.org/abs/2301.12405) details a few things (in the form of specific
lemmas) that have been left unformalized.
We present a succinct list of domain-theoretic formalization targets here:
1. Complete the formalization that bounded complete (continuous) dcpos with a
small basis are closed under exponentials. It follows from the case of
algebraic domains through a lemma that is left unformalized.
See DomainTheory.BasesAndContinuity.StepFunctions for details.
2. Formalize the untyped λ-calculus and its interpretation in Scott's D∞.
See DomainTheory.Bilimits.Dinfinity for the construction of D∞.
3. Formalize the results in reverse mathematics and delta-complete posets.
See Chapter 6 of the PhD thesis for details.
Item 2 should be a fun challenge for a student with an interest in
(domain-theoretic semantics of) programming languages.