Tom de Jong, 8 March 2020.
Minor updates on 28 January 2022.

We give the main properties of the ideal completion of an abstract basis,
cf. Section 2.2.6 of "Domain Theory" by Abramsky and Jung.

In particular, we show that the abstract basis is a small basis for the ideal
completion, making it a continuous dcpo in particular. Moreover, if the relation
of the abstract basis is reflexive, then the ideal completion has a small
compact basis and hence is algebraic.

In proving this, it is helpful to characterize the way-below relation in the
ideal completion.

Finally, we describe how a monotone map from the abstract basis to a dcpo
induces a map from the ideal completion to the dcpo.

\begin{code}

{-# OPTIONS --safe --without-K --lossy-unification #-}

open import MLTT.Spartan hiding (J)

open import UF.FunExt
open import UF.PropTrunc
open import UF.Subsingletons

module DomainTheory.IdealCompletion.Properties
        (pt : propositional-truncations-exist)
        (fe : Fun-Ext)
        (pe : Prop-Ext)
        (𝓥 : Universe) -- universe where the index types for directedness
                       -- completeness live
       where

open import UF.Equiv
open import UF.Powerset
open import UF.Subsingletons-FunExt

open import DomainTheory.Basics.Dcpo pt fe 𝓥
open import DomainTheory.Basics.Miscelanea pt fe 𝓥
open import DomainTheory.Basics.WayBelow pt fe 𝓥

open import DomainTheory.BasesAndContinuity.Bases pt fe 𝓥
open import DomainTheory.BasesAndContinuity.Continuity pt fe 𝓥

open import DomainTheory.IdealCompletion.IdealCompletion pt fe pe 𝓥

open PropositionalTruncation pt

\end{code}

We first prove the basic yet useful fact that reflexivity implies the nullary
and binary interpolation axioms for abstract bases.

\begin{code}

module _
        {X : 𝓤 ̇ }
        (_≺_ : X  X  𝓣 ̇ )
       where

 reflexivity-implies-INT₀ : ({x : X}  x  x)  (x : X)   y  X , y  x
 reflexivity-implies-INT₀ r x =  x , r 

 reflexivity-implies-INT₂ : ({x : X}  x  x)  {y₀ y₁ x : X}  y₀  x  y₁  x
                            z  X , y₀  z × y₁  z × z  x
 reflexivity-implies-INT₂ r {y₀} {y₁} {x} l m =  x , l , m , r 

\end{code}

A few useful facts regarding ideals on abstract bases:
- the ideals are rounded;
- the map that maps x : X to its prinicipal ideal is monotone;
- suprema of ideals are given by unions.

\begin{code}

module Idl-Properties
        {X : 𝓤 ̇ }
        (_≺_ : X  X  𝓥  𝓣 ̇ )
        (≺-prop-valued : {x y : X}  is-prop (x  y))
        (INT₂ : {y₀ y₁ x : X}  y₀  x  y₁  x
                z  X , y₀  z × y₁  z × z  x)
        (INT₀ : (x : X)   y  X , y  x)
        (≺-trans : {x y z : X}  x  y  y  z  x  z)
       where

 open Ideals {𝓤} {𝓥  𝓣} {X} _≺_ ≺-prop-valued INT₂ INT₀ ≺-trans

 roundedness : (I : Idl) {x : X}  (x ∈ᵢ I)   y  X , y ∈ᵢ I × x  y
 roundedness I {x} xI = ∥∥-functor γ h
  where
   h :  y  X , y ∈ᵢ I × x  y × x  y
   h = directed-sets-are-semidirected (carrier I)
       (ideals-are-directed-sets (carrier I) (ideality I))
       x x xI xI
   γ : (Σ y  X , y ∈ᵢ I × x  y × x  y)
      Σ y  X , y ∈ᵢ I × x  y
   γ (y , yI , l , _) = y , yI , l

 infix 25 ↓_
 ↓_ : X  Idl
  x =  (y : X)  (y  x) , ≺-prop-valued) ,
       ls , inh , δ
  where
   ls : is-lowerset  y  (y  x) , ≺-prop-valued)
   ls x y = ≺-trans
   inh :  y  X , y  x
   inh = INT₀ x
   δ : is-semidirected-set  y  (y  x) , ≺-prop-valued)
   δ y₁ y₂ l₁ l₂ = ∥∥-functor γ (INT₂ l₁ l₂)
    where
     γ : (Σ z  X , y₁  z × y₂  z × z  x)
        (Σ z  X , z  x × y₁  z × y₂  z)
     γ (z , m₁ , m₂ , n) = z , n , m₁ , m₂

 ↓-is-monotone : {x y : X}  x  y   x ⊑⟨ Idl-DCPO   y
 ↓-is-monotone {x} {y} l _ m = ≺-trans m l

 Idl-sups-from-powerset : {𝓐 : 𝓥 ̇ } (α : 𝓐  Idl) (I : Idl)
                         is-sup _⊆_ (carrier I) (carrier  α)
                         is-sup _⊑_ I α
 Idl-sups-from-powerset {𝓐} α I I-is-sup = (ub , lb-of-ubs)
  where
   ub : is-upperbound _⊑_ I α
   ub = sup-is-upperbound _⊆_ {𝓥} {𝓐} {carrier I} {carrier  α} I-is-sup
   lb-of-ubs : is-lowerbound-of-upperbounds _⊑_ I α
   lb-of-ubs J J-is-ub = sup-is-lowerbound-of-upperbounds _⊆_ {𝓥} {𝓐}
                          {carrier I} {carrier  α}
                          I-is-sup (carrier J) J-is-ub

\end{code}

We are mainly interested in ideals of small abstract basis, i.e. when X : 𝓥 and
_≺_ takes values in 𝓥.

\begin{code}

record abstract-basis : 𝓥  ̇ where
 field
  basis-carrier : 𝓥 ̇
  _≺_ : basis-carrier  basis-carrier  𝓥 ̇
  ≺-prop-valued : {x y : basis-carrier}  is-prop (x  y)
  ≺-trans : {x y z : basis-carrier}  x  y  y  z  x  z
  INT₀ : (x : basis-carrier)   y  basis-carrier , y  x
  INT₂ : {y₀ y₁ x : basis-carrier}  y₀  x  y₁  x
         z  basis-carrier , y₀  z × y₁  z × z  x

record reflexive-abstract-basis : 𝓥  ̇ where
 field
  basis-carrier : 𝓥 ̇
  _≺_ : basis-carrier  basis-carrier  𝓥 ̇
  ≺-prop-valued : {x y : basis-carrier}  is-prop (x  y)
  ≺-trans : {x y z : basis-carrier}  x  y  y  z  x  z
  ≺-refl : {x : basis-carrier}  x  x

 INT₀ : (x : basis-carrier)   y  basis-carrier , y  x
 INT₀ = reflexivity-implies-INT₀ _≺_ ≺-refl

 INT₂ : {y₀ y₁ x : basis-carrier}  y₀  x  y₁  x
         z  basis-carrier , y₀  z × y₁  z × z  x
 INT₂ = reflexivity-implies-INT₂ _≺_ ≺-refl

reflexive-abstract-basis-to-abstract-basis : reflexive-abstract-basis
                                            abstract-basis
reflexive-abstract-basis-to-abstract-basis rab =
 record
  { basis-carrier = basis-carrier
  ; _≺_ = _≺_
  ; ≺-prop-valued = ≺-prop-valued
  ; ≺-trans = ≺-trans
  ; INT₀ = INT₀
  ; INT₂ = INT₂
  }
  where
   open reflexive-abstract-basis rab

module Ideals-of-small-abstract-basis
        (abs-basis : abstract-basis)
       where

 open abstract-basis abs-basis renaming (basis-carrier to X)

 open Ideals {𝓥} {𝓥} {X} _≺_ ≺-prop-valued INT₂ INT₀ ≺-trans public
 open Idl-Properties {𝓥} {𝓥} {X} _≺_ ≺-prop-valued INT₂ INT₀ ≺-trans public

\end{code}

We show that every ideal I is the supremum of {↓ x ∣ x ∈ I}.

\begin{code}

 ↓-of-ideal : (I : Idl)  𝕋 (carrier I)  Idl
 ↓-of-ideal I (i , _) =  i

 ↓-of-ideal-is-directed : (I : Idl)  is-Directed Idl-DCPO (↓-of-ideal I)
 ↓-of-ideal-is-directed (I , ι) = inh , ε
  where
   δ : is-semidirected-set I
   δ = directed-sets-are-semidirected I (ideals-are-directed-sets I ι)
   inh :  𝕋 I 
   inh = directed-sets-are-inhabited I (ideals-are-directed-sets I ι)
   ε : is-semidirected _⊑_ (↓-of-ideal (I , ι))
   ε (i , p) (j , q) = ∥∥-functor γ (δ i j p q)
    where
     γ : (Σ x  X , x  I × i  x × j  x)
        Σ k  𝕋 I , (↓-of-ideal (I , ι) (i , p)  ↓-of-ideal (I , ι) k)
                   × (↓-of-ideal (I , ι) (j , q)  ↓-of-ideal (I , ι) k)
     γ (x , xI , lᵢ , lⱼ) = (x , xI) , (u , v)
      where
       u : ↓-of-ideal (I , ι) (i , p)  ↓-of-ideal (I , ι) (x , xI)
       u y mᵢ = ≺-trans mᵢ lᵢ
       v : ↓-of-ideal (I , ι) (j , q)  ↓-of-ideal (I , ι) (x , xI)
       v y m = ≺-trans m lⱼ

 Idl-∐-= : (I : Idl)
          I   Idl-DCPO {_} {↓-of-ideal I} (↓-of-ideal-is-directed I)
 Idl-∐-= I = antisymmetry Idl-DCPO I ( Idl-DCPO {_} {α} δ) l₁ l₂
  where
   α : 𝕋 (carrier I)  Idl
   α = ↓-of-ideal I
   δ : is-Directed Idl-DCPO α
   δ = ↓-of-ideal-is-directed I
   l₁ : I ⊑⟨ Idl-DCPO   Idl-DCPO {_} {α} δ
   l₁ i p = ∥∥-functor γ (roundedness I p)
    where
     γ : (Σ j  X , j ∈ᵢ I × i  j)
        Σ a  𝕋 (carrier I) , i ∈ᵢ α a
     γ (j , q , m) = (j , q) , m
   l₂ :  Idl-DCPO {_} {α} δ ⊑⟨ Idl-DCPO  I
   l₂ i p = ∥∥-rec (∈-is-prop (carrier I) i) γ p
    where
     γ : (Σ j  𝕋 (carrier I) , i  pr₁ j)  i  carrier I
     γ ((j , q) , m) = ideals-are-lowersets (carrier I) (ideality I)
                           i j m q

\end{code}

We give two characterizations of the way-below relation in Idl, cf. Proposition
2.2.22 of "Domain Theory" by Abramsky and Jung.

\begin{code}

 Idl-≪-in-terms-of-⊑ : (I J : Idl)  I ≪⟨ Idl-DCPO  J
                       x  X , x ∈ᵢ J × I ⊑⟨ Idl-DCPO   x
 Idl-≪-in-terms-of-⊑ I J u = ∥∥-functor γ g
  where
   γ : (Σ j  𝕋 (carrier J) , I ⊑⟨ Idl-DCPO  (↓-of-ideal J j))
      Σ x  X , x ∈ᵢ J × I ⊑⟨ Idl-DCPO   x
   γ ((j , p) , l) = j , (p , l)
   g :  j  𝕋 (carrier J) , I ⊑⟨ Idl-DCPO  (↓-of-ideal J j)
   g = u (𝕋 (carrier J)) (↓-of-ideal J) (↓-of-ideal-is-directed J)
       (=-to-⊑ Idl-DCPO (Idl-∐-= J))

 Idl-≪-in-terms-of-⊑-converse : (I J : Idl)
                                x  X , x ∈ᵢ J × I ⊑⟨ Idl-DCPO   x
                               I ≪⟨ Idl-DCPO  J
 Idl-≪-in-terms-of-⊑-converse I J = ∥∥-rec (≪-is-prop-valued Idl-DCPO {I} {J}) γ
  where
   γ : (Σ x  X , x ∈ᵢ J × I ⊑⟨ Idl-DCPO   x)
      I ≪⟨ Idl-DCPO  J
   γ (x , xJ , s) 𝓐 α δ t = ∥∥-functor g (t x xJ)
    where
     g : (Σ a  𝓐 , x ∈ᵢ α a)
        Σ a  𝓐 , I ⊑⟨ Idl-DCPO  α a
     g (a , xa) = a , r
      where
       r : I ⊑⟨ Idl-DCPO  α a
       r = transitivity Idl-DCPO I ( x) (α a) s q
        where
         q :  x ⊑⟨ Idl-DCPO  α a
         q y l = ideals-are-lowersets (carrier (α a)) (ideality (α a)) y x l xa

 Idl-≪-in-terms-of-⊑₂ : (I J : Idl)  I ≪⟨ Idl-DCPO  J
                        x  X , Σ y  X , x  y
                                          × I ⊑⟨ Idl-DCPO   x
                                          ×  x ⊑⟨ Idl-DCPO   y
                                          ×  y ⊑⟨ Idl-DCPO  J
 Idl-≪-in-terms-of-⊑₂ I J u = ∥∥-rec ∥∥-is-prop γ (Idl-≪-in-terms-of-⊑ I J u)
  where
   γ : (Σ x  X , x ∈ᵢ J × I ⊑⟨ Idl-DCPO   x)
       x  X , Σ y  X , x  y
               × I ⊑⟨ Idl-DCPO   x
               ×  x ⊑⟨ Idl-DCPO   y
               ×  y ⊑⟨ Idl-DCPO  J
   γ (x , xJ , s) = ∥∥-functor g (roundedness J xJ)
    where
     g : (Σ y  X , y ∈ᵢ J × x  y)
        Σ x  X , Σ y  X , x  y
                 × I ⊑⟨ Idl-DCPO   x
                 ×  x ⊑⟨ Idl-DCPO   y
                 ×  y ⊑⟨ Idl-DCPO  J
     g (y , yJ , l) = x , y , l , s , t , r
      where
       t :  x ⊑⟨ Idl-DCPO   y
       t = ↓-is-monotone l
       r :  y ⊑⟨ Idl-DCPO  J
       r z m = ideals-are-lowersets (carrier J) (ideality J) z y m yJ

 Idl-≪-in-terms-of-⊑₂-converse : (I J : Idl)
                                 x  X , Σ y  X , x  y
                                                   × I ⊑⟨ Idl-DCPO   x
                                                   ×  x ⊑⟨ Idl-DCPO   y
                                                   ×  y ⊑⟨ Idl-DCPO  J
                                I ≪⟨ Idl-DCPO  J
 Idl-≪-in-terms-of-⊑₂-converse I J = ∥∥-rec (≪-is-prop-valued Idl-DCPO {I} {J}) γ
  where
   γ : (Σ x  X , Σ y  X , x  y
                × I ⊑⟨ Idl-DCPO   x
                ×  x ⊑⟨ Idl-DCPO   y
                ×  y ⊑⟨ Idl-DCPO  J)
      I ≪⟨ Idl-DCPO  J
   γ (x , y , l , s , _ , r) 𝓐 α δ m = ∥∥-functor g (m x (r x l))
    where
     g : (Σ a  𝓐 , x ∈ᵢ α a)
        Σ a  𝓐 , I ⊑⟨ Idl-DCPO  α a
     g (a , xa) = a , h
      where
       h : I ⊑⟨ Idl-DCPO  α a
       h = transitivity Idl-DCPO I ( x) (α a) s s'
        where
         s' :  x ⊑⟨ Idl-DCPO  α a
         s' z n = ideals-are-lowersets (carrier (α a)) (ideality (α a)) z x n xa

\end{code}

For principal ideals we have the following criteria for being way-below another
ideal.

\begin{code}

 ↓≪-criterion : (I : Idl) (x : X)
               x ∈ᵢ I   x ≪⟨ Idl-DCPO  I
 ↓≪-criterion I x x-in-I =
  Idl-≪-in-terms-of-⊑-converse ( x) I  x , x-in-I , reflexivity Idl-DCPO ( x) 

 ↓⊑-criterion : (I : Idl) (x : X)
               x ∈ᵢ I   x  I
 ↓⊑-criterion I x x-in-I = ≪-to-⊑ Idl-DCPO { x} {I} (↓≪-criterion I x x-in-I)

 ↓⊑-criterion-converse : (I : Idl) (x : X)
                        x  x
                         x  I  x ∈ᵢ I
 ↓⊑-criterion-converse I x r ↓x-below-I = ↓x-below-I x r

\end{code}

We now work towards showing that ↓_ : X → Idl is a small basis (in the sense of
DomainTheory.BasesAndContinuity.Bases.lagda) for Idl. In particular, Idl is a
continuous dcpo.

\begin{code}

 ↓-Idl-inclusion : (I : Idl)  (Σ x  X ,  x ≪⟨ Idl-DCPO  I)  Idl
 ↓-Idl-inclusion I = ↓_  pr₁

 ↓-Idl-inclusion-is-directed : (I : Idl)
                              is-Directed (Idl-DCPO) (↓-Idl-inclusion I)
 ↓-Idl-inclusion-is-directed I = inh , semidir
  where
   inh :  domain (↓-Idl-inclusion I) 
   inh = ∥∥-functor h (directed-sets-are-inhabited (carrier I)
                     (ideals-are-directed-sets (carrier I) (ideality I)))
    where
     h : 𝕋 (carrier I)  domain (↓-Idl-inclusion I)
     h (x , x-in-I) = (x , ↓≪-criterion I x x-in-I)
   semidir : is-semidirected _⊑_ (↓-Idl-inclusion I)
   semidir (x , ↓x-way-below-I) (y , ↓y-way-below-I) =
    ∥∥-rec₂ ∃-is-prop f
           (Idl-≪-in-terms-of-⊑ ( x) I ↓x-way-below-I)
           (Idl-≪-in-terms-of-⊑ ( y) I ↓y-way-below-I)
     where
      f : (Σ x'  X , x' ∈ᵢ I ×  x   x')
         (Σ y'  X , y' ∈ᵢ I ×  y   y')
          k  domain (↓-Idl-inclusion I) , ( x  ↓-Idl-inclusion I k)
                                           × ( y  ↓-Idl-inclusion I k)
      f (x' , x'-in-I , ↓x-below-↓x') (y' , y'-in-I , ↓y-below-↓y') =
       ∥∥-functor g (directed-sets-are-semidirected
                        (carrier I)
                        (ideals-are-directed-sets (carrier I) (ideality I))
                        x' y' x'-in-I y'-in-I)
        where
         g : (Σ z  X , z ∈ᵢ I × (x'  z) × (y'  z))
            Σ k  domain (↓-Idl-inclusion I) , ( x  ↓-Idl-inclusion I k)
                                              × ( y  ↓-Idl-inclusion I k)
         g (z , z-in-I , x'-below-z , y'-below-z) =
          (z , ↓≪-criterion I z z-in-I) , (u , v)
           where
            u :  x   z
            u = transitivity Idl-DCPO ( x) ( x') ( z)
                 ↓x-below-↓x' (↓-is-monotone x'-below-z)
            v :  y   z
            v = transitivity Idl-DCPO ( y) ( y') ( z)
                 ↓y-below-↓y' (↓-is-monotone y'-below-z)

 ↓-Idl-inclusion-sup : (I : Idl)  is-sup _⊑_ I (↓-Idl-inclusion I)
 ↓-Idl-inclusion-sup I = ub , lb-of-ubs
  where
   ub : is-upperbound _⊑_ I (↓-Idl-inclusion I)
   ub (x , ↓x-way-below-I) y y-below-x = s y y-below-x
    where
     s :  x  I
     s = ≪-to-⊑ Idl-DCPO { x} {I} ↓x-way-below-I
   lb-of-ubs : is-lowerbound-of-upperbounds _⊑_ I (↓-Idl-inclusion I)
   lb-of-ubs J J-is-ub x x-in-I = ∥∥-rec (∈-is-prop (carrier J) x) h
                                         (roundedness I x-in-I)
    where
     h : (Σ y  X , y ∈ᵢ I × x  y)  x ∈ᵢ J
     h (y , y-in-I , x-below-y) = J-is-ub (y , lem) x x-below-y
      where
       lem :  y ≪⟨ Idl-DCPO  I
       lem = ↓≪-criterion I y y-in-I

 ↓-is-small-basis : is-small-basis Idl-DCPO ↓_
 ↓-is-small-basis = record {
   ≪ᴮ-is-small    = λ I x  ( x ≪ₛ I) , e ( x) I;
   ↡ᴮ-is-directed = ↓-Idl-inclusion-is-directed;
   ↡ᴮ-is-sup      = ↓-Idl-inclusion-sup
  }
   where
    _≪ₛ_ : Idl  Idl  𝓥 ̇
    I ≪ₛ J =  x  X , (x ∈ᵢ J) × I ⊑⟨ Idl-DCPO   x
    e : (I J : Idl)  I ≪ₛ J  I ≪⟨ Idl-DCPO  J
    e I J = logically-equivalent-props-are-equivalent
             ∃-is-prop (≪-is-prop-valued Idl-DCPO {I} {J})
             (Idl-≪-in-terms-of-⊑-converse I J)
             (Idl-≪-in-terms-of-⊑ I J)

 Idl-has-specified-small-basis : has-specified-small-basis Idl-DCPO
 Idl-has-specified-small-basis = (X , ↓_ , ↓-is-small-basis)

 Idl-structurally-continuous : structurally-continuous Idl-DCPO
 Idl-structurally-continuous = structurally-continuous-if-specified-small-basis
  Idl-DCPO Idl-has-specified-small-basis

 Idl-is-continuous-dcpo : is-continuous-dcpo Idl-DCPO
 Idl-is-continuous-dcpo =  Idl-structurally-continuous 

\end{code}

If _≺_ is reflexive, then Idl is algebraic with ↓_ : X → Idl giving a small
compact basis, as we prove now.

\begin{code}

 ↓-is-compact : (x : X)  x  x  is-compact Idl-DCPO ( x)
 ↓-is-compact x r 𝓘 α δ x-below-∐α =
  ∥∥-functor h (x-below-∐α x r)
   where
    h : (Σ i  𝓘 , x ∈ᵢ α i)
       Σ i  𝓘 ,  x  α i
    h (i , x-in-αᵢ) = (i , ↓⊑-criterion (α i) x x-in-αᵢ)

 module _
         (≺-is-reflexive : (x : X)  x  x)
        where

  ↓-is-small-compact-basis : is-small-compact-basis Idl-DCPO ↓_
  ↓-is-small-compact-basis =
   small-and-compact-basis Idl-DCPO ↓_ ↓-is-small-basis
                            x  ↓-is-compact x (≺-is-reflexive x))

  Idl-has-specified-small-compact-basis : has-specified-small-compact-basis Idl-DCPO
  Idl-has-specified-small-compact-basis = (X , ↓_ , ↓-is-small-compact-basis)

  Idl-structurally-algebraic : structurally-algebraic Idl-DCPO
  Idl-structurally-algebraic =
   structurally-algebraic-if-specified-small-compact-basis
    Idl-DCPO Idl-has-specified-small-compact-basis

  Idl-is-algebraic-dcpo : is-algebraic-dcpo Idl-DCPO
  Idl-is-algebraic-dcpo =  Idl-structurally-algebraic 

\end{code}

Finally, given a monotone map from X to a dcpo D, we construct a continuous map
from Idl to D. This provides us with a convenient way to define maps out of the
ideal completion.

\begin{code}

 module Idl-mediating
         (𝓓 : DCPO {𝓤} {𝓣})
         (f : X   𝓓 )
         (f-is-monotone : {x y : X}  x  y  f x ⊑⟨ 𝓓  f y)
        where

  Idl-mediating-directed : (I : Idl)
                          is-Directed 𝓓 {𝕋 (carrier I)} (f  pr₁)
  Idl-mediating-directed I =
   (directed-sets-are-inhabited (carrier I) Idir) , ε
    where
     ι : 𝕋 (carrier I)   𝓓 
     ι = f  pr₁
     Idir : is-directed-set (carrier I)
     Idir = ideals-are-directed-sets (carrier I) (ideality I)
     ε : is-semidirected (underlying-order 𝓓) ι
     ε (x , xI) (y , yI) = ∥∥-functor γ g
      where
       γ : (Σ z  X , z ∈ᵢ I × x  z × y  z)
          Σ i  𝕋 (carrier I) , (ι (x , xI) ⊑⟨ 𝓓  ι i)
                               × (ι (y , yI) ⊑⟨ 𝓓  ι i)
       γ (z , zI , lx , ly) = (z , zI) , f-is-monotone lx , f-is-monotone ly
       g :  z  X , z ∈ᵢ I × x  z × y  z
       g = directed-sets-are-semidirected (carrier I) Idir x y xI yI

  Idl-mediating-map : Idl   𝓓 
  Idl-mediating-map I =  𝓓 (Idl-mediating-directed I)

  Idl-mediating-map-is-continuous : is-continuous Idl-DCPO 𝓓 Idl-mediating-map
  Idl-mediating-map-is-continuous 𝓐 α δ = ub , lb
   where
    f' : Idl   𝓓 
    f' = Idl-mediating-map
    ε : (I : Idl)  is-Directed 𝓓 (f  pr₁)
    ε = Idl-mediating-directed
    ub : (a : 𝓐)  f' (α a) ⊑⟨ 𝓓  f' ( Idl-DCPO {𝓐} {α} δ)
    ub a = ∐-is-lowerbound-of-upperbounds 𝓓 (ε (α a))
           (f' ( Idl-DCPO {𝓐} {α} δ)) γ
     where
      γ : (y : (Σ x  X , x ∈ᵢ α a))
         f (pr₁ y) ⊑⟨ 𝓓  f' ( Idl-DCPO {𝓐} {α} δ)
      γ (x , p) = ∐-is-upperbound 𝓓 (ε ( Idl-DCPO {𝓐} {α} δ)) g
       where
        g : Σ y  X , y ∈ᵢ ( Idl-DCPO {𝓐} {α} δ)
        g = x ,  a , p 
    lb : is-lowerbound-of-upperbounds (underlying-order 𝓓)
          (f' ( Idl-DCPO {𝓐} {α} δ))
           a  f' (α a))
    lb d u = ∐-is-lowerbound-of-upperbounds 𝓓 (ε ( Idl-DCPO {𝓐} {α} δ)) d γ
     where
      γ : (x : (Σ y  X , y ∈ᵢ  Idl-DCPO {𝓐} {α} δ))
         f (pr₁ x) ⊑⟨ 𝓓  d
      γ (x , p) = ∥∥-rec (prop-valuedness 𝓓 (f x) d) g p
       where
        g : (Σ a  𝓐 , x ∈ᵢ α a)  f x ⊑⟨ 𝓓  d
        g (a , q) = f x      ⊑⟨ 𝓓 ⟩[ ∐-is-upperbound 𝓓 (ε (α a)) (x , q) ]
                    f' (α a) ⊑⟨ 𝓓 ⟩[ u a ]
                    d        ∎⟨ 𝓓 

\end{code}

If _≺_ is reflexive, then the mediating map makes the obvious triangle commute.

\begin{code}

  Idl-mediating-map-commutes : reflexive _≺_
                              Idl-mediating-map  ↓_  f
  Idl-mediating-map-commutes r x = γ
   where
    δ : is-Directed 𝓓 (f  pr₁)
    δ = Idl-mediating-directed ( x)
    γ :  𝓓 δ  f x
    γ = antisymmetry 𝓓 ( 𝓓 δ) (f x) a b
     where
      a :  𝓓 δ ⊑⟨ 𝓓  f x
      a = ∐-is-lowerbound-of-upperbounds 𝓓 δ (f x) g
       where
        g : (y : Σ z  X , z ∈ᵢ  x)
           f (pr₁ y) ⊑⟨ 𝓓  f x
        g (y , l) = f-is-monotone l
      b : f x ⊑⟨ 𝓓   𝓓 δ
      b = ∐-is-upperbound 𝓓 δ (x , r x)

\end{code}

Added 24 June 2024.

Moreover, it is the unique Scott continuous to do so.

\begin{code}

  Idl-mediating-map-is-unique' : reflexive _≺_
                                (g : Idl   𝓓 )
                                is-continuous Idl-DCPO 𝓓 g
                                g  ↓_  f
                                g  Idl-mediating-map
  Idl-mediating-map-is-unique' r g c h I =
   g I                                           =⟨ ⦅1⦆ 
   g ( Idl-DCPO δ)                              =⟨ ⦅2⦆ 
    𝓓 (image-is-directed' Idl-DCPO 𝓓 (g , c) δ) =⟨ ⦅3⦆ 
    𝓓 (Idl-mediating-directed I)                =⟨ refl 
   Idl-mediating-map I                           
    where
     δ : is-Directed Idl-DCPO (↓-of-ideal I)
     δ = ↓-of-ideal-is-directed I

     ⦅1⦆ = ap g (Idl-∐-= I)
     ⦅2⦆ = continuous-∐-= Idl-DCPO 𝓓 (g , c) δ
     ⦅3⦆ = ∐-family-=' 𝓓  (b , _)  h b)
                       (image-is-directed' Idl-DCPO 𝓓 (g , c) δ)
                       (Idl-mediating-directed I)

  Idl-mediating-map-is-unique : reflexive _≺_
                               ∃!   DCPO[ Idl-DCPO , 𝓓 ] ,
                                   [ Idl-DCPO , 𝓓 ]⟨    ↓_  f
  Idl-mediating-map-is-unique r =
   ((Idl-mediating-map , Idl-mediating-map-is-continuous) ,
    Idl-mediating-map-commutes r) ,
     ((g , c) , h)  to-subtype-=
                         _  Π-is-prop fe  _  sethood 𝓓))
                        (to-continuous-function-= Idl-DCPO 𝓓
                          (∼-sym (Idl-mediating-map-is-unique' r g c h))))

\end{code}