Tom de Jong, 9 March 2020 Refactored 9 February 2022. Taking the rounded ideal copmletion of the dyadics (π»,βΊ) we obtain an example of a continuous dcpo without any compact elements. Hence, it cannot be algebraic. \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import UF.FunExt open import UF.PropTrunc open import UF.Subsingletons module DomainTheory.Examples.IdlDyadics (pt : propositional-truncations-exist) (fe : Fun-Ext) (pe : Prop-Ext) where open PropositionalTruncation pt open import DyadicsInductive.Dyadics open import DyadicsInductive.DyadicOrder open import DyadicsInductive.DyadicOrder-PropTrunc pt open import DomainTheory.Basics.Dcpo pt fe π€β open import DomainTheory.Basics.WayBelow pt fe π€β open import DomainTheory.BasesAndContinuity.Bases pt fe π€β open import DomainTheory.BasesAndContinuity.Continuity pt fe π€β open import DomainTheory.IdealCompletion.Properties pt fe pe π€β open Ideals-of-small-abstract-basis (record { basis-carrier = π» ; _βΊ_ = _βΊ_ ; βΊ-prop-valued = Ξ» {x} {y} β βΊ-is-prop-valued x y ; βΊ-trans = Ξ» {x} {y} {z} β βΊ-is-transitive x y z ; INTβ = βΊ-has-no-left-endpoint ; INTβ = Ξ» {x} {y} {z} β βΊ-interpolationβ x y z }) Idl-π» : DCPO {π€β} {π€β} Idl-π» = Idl-DCPO Idl-π»-is-continuous : is-continuous-dcpo Idl-π» Idl-π»-is-continuous = Idl-is-continuous-dcpo Idl-π»-has-small-basis : has-specified-small-basis Idl-π» Idl-π»-has-small-basis = π» , β_ , β-is-small-basis Idl-π»-has-no-compact-elements : (I : Idl) β Β¬ (is-compact Idl-π» I) Idl-π»-has-no-compact-elements I ΞΊ = β₯β₯-rec π-is-prop Ξ³ g where Ξ³ : Β¬ (Ξ£ x κ π» , x βα΅’ I Γ I β (β x)) Ξ³ (x , xI , s) = βΊ-to-β {x} {x} r refl where r : x βΊ x r = s x xI g : β x κ π» , x βα΅’ I Γ I β (β x) g = Idl-βͺ-in-terms-of-β I I ΞΊ Idl-π»-is-not-algebraic : Β¬ (is-algebraic-dcpo Idl-π») Idl-π»-is-not-algebraic = β₯β₯-rec π-is-prop Ξ³ where Ξ³ : Β¬ (structurally-algebraic Idl-π») Ξ³ str-alg = β₯β₯-rec π-is-prop r I-inh where open structurally-algebraic str-alg x : π» x = middle I-inh : β₯ index-of-compact-family (β x) β₯ I-inh = inhabited-if-Directed Idl-π» (compact-family (β x)) (compact-family-is-directed (β x)) r : Β¬ (index-of-compact-family (β x)) r i = Idl-π»-has-no-compact-elements (compact-family (β x) i) (compact-family-is-compact (β x) i) \end{code}