Tom de Jong, 7 March 2020 As suggested by Martin Escardo. No endpoints, density and binary interpolation for (𝔻 , ≺) formulated using ∃. \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import DyadicsInductive.Dyadics open import DyadicsInductive.DyadicOrder open import UF.PropTrunc module DyadicsInductive.DyadicOrder-PropTrunc (pt : propositional-truncations-exist) where open PropositionalTruncation pt ≺-has-no-left-endpoint : (x : 𝔻) → ∃ y ꞉ 𝔻 , y ≺ x ≺-has-no-left-endpoint x = ∣ ≺-has-no-left-endpoint-Σ x ∣ ≺-has-no-right-endpoint : (x : 𝔻) → ∃ y ꞉ 𝔻 , x ≺ y ≺-has-no-right-endpoint x = ∣ ≺-has-no-right-endpoint-Σ x ∣ ≺-is-dense : {x y : 𝔻} → x ≺ y → ∃ z ꞉ 𝔻 , x ≺ z × z ≺ y ≺-is-dense {x} {y} l = ∣ ≺-is-dense-Σ x y l ∣ ≺-interpolation₂ : (x₁ x₂ y : 𝔻) → x₁ ≺ y → x₂ ≺ y → ∃ z ꞉ 𝔻 , x₁ ≺ z × x₂ ≺ z × z ≺ y ≺-interpolation₂ x₁ x₂ y l₁ l₂ = ∣ ≺-interpolation₂-Σ x₁ x₂ y l₁ l₂ ∣ \end{code}