Tom de Jong, 7 March 2020

As suggested by Martin Escardo.

No endpoints, density and binary interpolation for (𝔻 , ≺) formulated using ∃.

\begin{code}

{-# OPTIONS --safe --without-K #-}

open import MLTT.Spartan
open import DyadicsInductive.Dyadics
open import DyadicsInductive.DyadicOrder
open import UF.PropTrunc

module DyadicsInductive.DyadicOrder-PropTrunc (pt : propositional-truncations-exist) where

open PropositionalTruncation pt

≺-has-no-left-endpoint : (x : 𝔻)   y  𝔻 , y  x
≺-has-no-left-endpoint x =  ≺-has-no-left-endpoint-Σ x 

≺-has-no-right-endpoint : (x : 𝔻)   y  𝔻 , x  y
≺-has-no-right-endpoint x =  ≺-has-no-right-endpoint-Σ x 

≺-is-dense : {x y : 𝔻}  x  y   z  𝔻 , x  z × z  y
≺-is-dense {x} {y} l =  ≺-is-dense-Σ x y l 

≺-interpolation₂ : (x₁ x₂ y : 𝔻)  x₁  y  x₂  y
                   z  𝔻 , x₁  z × x₂  z × z  y
≺-interpolation₂ x₁ x₂ y l₁ l₂ =  ≺-interpolation₂-Σ x₁ x₂ y l₁ l₂ 

\end{code}