Martin Escardo 2012.

See my JSL paper "Infinite sets that satisfy the principle of
omniscience" for a discussion of the type ℕ∞ defined here.
Essentially, ℕ∞ is ℕ with an added point ∞.

Added December 2017. What we knew for a long time: The ℕ∞ is a retract
of the Cantor type ℕ → 𝟚. This required adding a number of
lemmas. More additions after that date.

\begin{code}

{-# OPTIONS --safe --without-K #-}

module CoNaturals.GenericConvergentSequence where

open import MLTT.Spartan
open import MLTT.Two-Properties
open import Notation.CanonicalMap
open import Notation.Order
open import Ordinals.Notions
open import TypeTopology.Cantor
open import TypeTopology.Density
open import TypeTopology.TotallySeparated
open import UF.Base
open import UF.DiscreteAndSeparated
open import UF.Embeddings
open import UF.FunExt
open import UF.NotNotStablePropositions
open import UF.Retracts
open import UF.Sets
open import UF.Subsingletons
open import UF.Subsingletons-FunExt

\end{code}

Definition (The generic convergent sequence).  We use u,v,x to range
over ℕ∞ and α,β,γ to range over (ℕ → 𝟚):

\begin{code}

is-decreasing : (  𝟚)  𝓤₀ ̇
is-decreasing α = (i : )  α i  α (succ i)

being-decreasing-is-prop : funext₀  (α :   𝟚)  is-prop (is-decreasing α)
being-decreasing-is-prop fe α = Π-is-prop fe  _  ≤₂-is-prop-valued)

ℕ∞ : 𝓤₀ ̇
ℕ∞ = Σ α  (  𝟚) , is-decreasing α

ℕ∞-to-ℕ→𝟚 : ℕ∞  (  𝟚)
ℕ∞-to-ℕ→𝟚 = pr₁

instance
 canonical-map-ℕ∞-ℕ→𝟚 : Canonical-Map ℕ∞ (  𝟚)
 ι {{canonical-map-ℕ∞-ℕ→𝟚}} = ℕ∞-to-ℕ→𝟚

ℕ∞-to-ℕ→𝟚-lc : funext₀  left-cancellable ℕ∞-to-ℕ→𝟚
ℕ∞-to-ℕ→𝟚-lc fe = pr₁-lc (being-decreasing-is-prop fe _)

stays-zero : (u : ℕ∞) {n : }  ι u n    ι u (succ n)  
stays-zero u@(α , d) {n} p = ₀-minimal (transport (ι u (succ n) ≤₂_) p (d n))

force-decreasing : (  𝟚)  (  𝟚)
force-decreasing β 0        = β 0
force-decreasing β (succ i) = min𝟚 (β (succ i)) (force-decreasing β i)

force-decreasing-is-decreasing : (β :   𝟚)  is-decreasing (force-decreasing β)
force-decreasing-is-decreasing β 0        = Lemma[minab≤₂b]
force-decreasing-is-decreasing β (succ i) = Lemma[minab≤₂b]
                                             {β (succ (succ i))}
                                             {force-decreasing β (succ i)}

force-decreasing-unchanged : (α :   𝟚)
                            is-decreasing α
                            force-decreasing α  α
force-decreasing-unchanged α d 0        = refl
force-decreasing-unchanged α d (succ i) = g
  where
    IH : force-decreasing α i  α i
    IH = force-decreasing-unchanged α d i

    p : α (succ i)  α i
    p = d i

    h : min𝟚 (α (succ i)) (α i)  α (succ i)
    h = Lemma[a≤₂b→min𝟚ab=a] p

    g' : min𝟚 (α (succ i)) (force-decreasing α i)  α (succ i)
    g' = transport  b  min𝟚 (α (succ i)) b  α (succ i)) (IH ⁻¹) h

    g : force-decreasing α (succ i)  α (succ i)
    g = g'

ℕ→𝟚-to-ℕ∞ : (  𝟚)  ℕ∞
ℕ→𝟚-to-ℕ∞ β = force-decreasing β , force-decreasing-is-decreasing β

ℕ→𝟚-to-ℕ∞-is-retraction : funext₀  (x : ℕ∞)  ℕ→𝟚-to-ℕ∞ (ι x)  x
ℕ→𝟚-to-ℕ∞-is-retraction fe (α , d) =
 to-Σ-=
  (dfunext fe (force-decreasing-unchanged α d) ,
   being-decreasing-is-prop fe α _ _)

ℕ∞-retract-of-Cantor : funext₀  retract ℕ∞ of (  𝟚)
ℕ∞-retract-of-Cantor fe = ℕ→𝟚-to-ℕ∞ , ι , ℕ→𝟚-to-ℕ∞-is-retraction fe

force-decreasing-is-smaller : (β :   𝟚) (i : )  force-decreasing β i  β i
force-decreasing-is-smaller β 0        = ≤₂-refl
force-decreasing-is-smaller β (succ i) = Lemma[minab≤₂a]

force-decreasing-is-not-much-smaller : (β :   𝟚) (n : )
                                      force-decreasing β n  
                                      Σ m   , β m  
force-decreasing-is-not-much-smaller β 0  p       = 0 , p
force-decreasing-is-not-much-smaller β (succ n) p = f c
  where
    A = Σ m   , β m  

    c : (β (succ n)  ) + (force-decreasing β n  )
    c = lemma[min𝟚ab=₀] {β (succ n)} {force-decreasing β n} p

    f : (β (succ n)  ) + (force-decreasing β n  )  A
    f (inl q) = succ n , q
    f (inr r) = force-decreasing-is-not-much-smaller β n r

ℕ∞-is-¬¬-separated : funext₀  is-¬¬-separated ℕ∞
ℕ∞-is-¬¬-separated fe = subtype-is-¬¬-separated
                         pr₁
                         (ℕ∞-to-ℕ→𝟚-lc fe)
                         (Cantor-is-¬¬-separated fe)

ℕ∞-is-set : funext₀  is-set ℕ∞
ℕ∞-is-set fe = ¬¬-separated-types-are-sets fe (ℕ∞-is-¬¬-separated fe)

ℕ∞-is-totally-separated : funext₀  is-totally-separated ℕ∞
ℕ∞-is-totally-separated fe = retract-of-totally-separated
                              (ℕ∞-retract-of-Cantor fe)
                              (Cantor-is-totally-separated fe)

Zero : ℕ∞
Zero =  i  ) ,  i  ≤₂-refl {})

Succ : ℕ∞  ℕ∞
Succ (α , d) = (cons  α , d')
 where
  d' : is-decreasing (cons  α)
  d' 0        = ₁-top
  d' (succ i) = d i

instance
 Square-Order-ℕ∞-ℕ : Square-Order ℕ∞ 
 _⊑_ {{Square-Order-ℕ∞-ℕ}} u n = ι u n  

 Strict-Square-Order-ℕ-ℕ∞ : Strict-Square-Order  ℕ∞
 _⊏_ {{Strict-Square-Order-ℕ-ℕ∞}} n u = ι u n  

not-⊏-is-⊒ : {m : } {u : ℕ∞}  ¬ (m  u)  u  m
not-⊏-is-⊒ f = different-from-₁-equal-₀ f

not-⊑-is-⊐ : {m : } {u : ℕ∞}  ¬ (u  m)  m  u
not-⊑-is-⊐ f = different-from-₀-equal-₁ f

is-Zero : ℕ∞  𝓤₀ ̇
is-Zero u = u  0

is-positive : ℕ∞  𝓤₀ ̇
is-positive u = 0  u

Zero-is-not-positive : (u : ℕ∞)  is-Zero u  ¬ is-positive u
Zero-is-not-positive u z p = zero-is-not-one
                              (     =⟨ z ⁻¹ 
                               ι u 0 =⟨ p 
                                    )

positivity : ℕ∞  𝟚
positivity u = ι u 0

𝟚-retract-of-ℕ∞ : retract 𝟚 of ℕ∞
𝟚-retract-of-ℕ∞  = positivity , s , η
 where
  s : 𝟚  ℕ∞
  s  = Zero
  s  = Succ Zero

  η : positivity  s  id
  η  = refl
  η  = refl

is-Zero-Zero : is-Zero Zero
is-Zero-Zero = refl

is-positive-Succ : (α : ℕ∞)  is-positive (Succ α)
is-positive-Succ α = refl

Zero-not-Succ : {u : ℕ∞}  Zero  Succ u
Zero-not-Succ {u} r = zero-is-not-one (ap positivity r)

Succ-not-Zero : {u : ℕ∞}  Succ u  Zero
Succ-not-Zero = ≠-sym Zero-not-Succ

 : ℕ∞
 =  i  ) ,  i  ≤₂-refl {})

Succ-∞-is-∞ : funext₀  Succ   
Succ-∞-is-∞ fe = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe lemma)
 where
   lemma : (i : )  ι (Succ ) i  ι  i
   lemma 0        = refl
   lemma (succ i) = refl

unique-fixed-point-of-Succ : funext₀  (u : ℕ∞)  u  Succ u  u  
unique-fixed-point-of-Succ fe u r = ℕ∞-to-ℕ→𝟚-lc fe claim
 where
  fact : (i : )  ι u i  ι (Succ u) i
  fact i = ap  -  ι - i) r

  lemma : (i : )  ι u i  
  lemma 0        = fact 0
  lemma (succ i) = ι u (succ i)        =⟨ fact (succ i) 
                   ι (Succ u) (succ i) =⟨ lemma i 
                                      

  claim : ι u  ι 
  claim = dfunext fe lemma

Pred : ℕ∞  ℕ∞
Pred (α , d) = (α  succ , d  succ)

Pred-Zero-is-Zero : Pred Zero  Zero
Pred-Zero-is-Zero = refl

Pred-Zero-is-Zero' : (u : ℕ∞)  u  Zero  Pred u  u
Pred-Zero-is-Zero' u refl = Pred-Zero-is-Zero

Pred-Succ : {u : ℕ∞}  Pred (Succ u)  u
Pred-Succ {u} = refl

Pred-∞-is-∞ : Pred   
Pred-∞-is-∞ = refl

Succ-lc : left-cancellable Succ
Succ-lc = ap Pred

ℕ-to-ℕ∞ :   ℕ∞
ℕ-to-ℕ∞ 0        = Zero
ℕ-to-ℕ∞ (succ n) = Succ (ℕ-to-ℕ∞ n)

instance
 Canonical-Map-ℕ-ℕ∞ : Canonical-Map  ℕ∞
 ι {{Canonical-Map-ℕ-ℕ∞}} = ℕ-to-ℕ∞

_≣_ : ℕ∞    𝓤₀ ̇
u  n = u  ι n

ℕ-to-ℕ∞-lc : left-cancellable ℕ-to-ℕ∞
ℕ-to-ℕ∞-lc {0}      {0}      r = refl
ℕ-to-ℕ∞-lc {0}      {succ n} r = 𝟘-elim (Zero-not-Succ r)
ℕ-to-ℕ∞-lc {succ m} {0}      r = 𝟘-elim (Zero-not-Succ (r ⁻¹))
ℕ-to-ℕ∞-lc {succ m} {succ n} r = ap succ (ℕ-to-ℕ∞-lc {m} {n} (Succ-lc r))

ℕ-to-ℕ∞-is-embedding : funext₀  is-embedding ℕ-to-ℕ∞
ℕ-to-ℕ∞-is-embedding fe =
 lc-maps-into-sets-are-embeddings ℕ-to-ℕ∞ ℕ-to-ℕ∞-lc (ℕ∞-is-set fe)

embedding-ℕ-to-ℕ∞ : funext₀    ℕ∞
embedding-ℕ-to-ℕ∞ fe = ℕ-to-ℕ∞ , ℕ-to-ℕ∞-is-embedding fe

ℕ-to-ℕ∞-lc-refl : (k : )  ℕ-to-ℕ∞-lc refl  refl {_} {} {k}
ℕ-to-ℕ∞-lc-refl 0        = refl
ℕ-to-ℕ∞-lc-refl (succ k) = ap (ap succ) (ℕ-to-ℕ∞-lc-refl k)

ℕ-to-ℕ∞-diagonal₀ : (n : )  ι n  n
ℕ-to-ℕ∞-diagonal₀ 0        = refl
ℕ-to-ℕ∞-diagonal₀ (succ n) = ℕ-to-ℕ∞-diagonal₀ n

ℕ-to-ℕ∞-diagonal₁ : (n : )  n  ι (succ n)
ℕ-to-ℕ∞-diagonal₁ 0        = refl
ℕ-to-ℕ∞-diagonal₁ (succ n) = ℕ-to-ℕ∞-diagonal₁ n

is-Zero-equal-Zero : funext₀  {u : ℕ∞}  is-Zero u  u  Zero
is-Zero-equal-Zero fe {u} base = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe lemma)
 where
  lemma : (i : )  ι u i  ι Zero i
  lemma 0        = base
  lemma (succ i) = [a=₁→b=₁]-gives-[b=₀→a=₀]
                    (≤₂-criterion-converse (pr₂ u i)) (lemma i)

same-positivity : funext₀
                 (u v : ℕ∞)
                 (u  Zero  v  Zero)
                 (v  Zero  u  Zero)
                 positivity u  positivity v
same-positivity fe₀ u v f g = ≤₂-anti (≤₂'-gives-≤₂ a)
                                      (≤₂'-gives-≤₂ b)
 where
  a : is-Zero v  is-Zero u
  a p = transport⁻¹ is-Zero (g (is-Zero-equal-Zero fe₀ p)) refl

  b : is-Zero u  is-Zero v
  b p = transport⁻¹ is-Zero (f (is-Zero-equal-Zero fe₀ p)) refl

successors-same-positivity : {u u' v v' : ℕ∞}
                            u  Succ u'
                            v  Succ v'
                            positivity u  positivity v
successors-same-positivity refl refl = refl

not-Zero-is-Succ : funext₀  {u : ℕ∞}  u  Zero  u  Succ (Pred u)
not-Zero-is-Succ fe {u} f = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe lemma)
 where
  lemma : (i : )  ι u i  ι (Succ (Pred u)) i
  lemma 0        = different-from-₀-equal-₁ (f  is-Zero-equal-Zero fe)
  lemma (succ i) = refl

positive-is-not-Zero : {u : ℕ∞}  is-positive u  u  Zero
positive-is-not-Zero {u} r s = lemma r
 where
  lemma : ¬ (is-positive u)
  lemma = equal-₀-different-from-₁ (ap positivity s)

positive-equal-Succ : funext₀  {u : ℕ∞}  is-positive u  u  Succ (Pred u)
positive-equal-Succ fe r = not-Zero-is-Succ fe (positive-is-not-Zero r)

Zero-or-Succ : funext₀  (u : ℕ∞)  (u  Zero) + (u  Succ (Pred u))
Zero-or-Succ fe₀ u = 𝟚-equality-cases
                       (z : is-Zero u)  inl (is-Zero-equal-Zero fe₀ z))
                       (p : is-positive u)  inr (positive-equal-Succ fe₀ p))

is-Succ : ℕ∞  𝓤₀ ̇
is-Succ u = Σ w  ℕ∞ , u  Succ w

Zero+Succ : funext₀  (u : ℕ∞)  (u  Zero) + is-Succ u
Zero+Succ fe₀ u = Cases (Zero-or-Succ fe₀ u) inl  p  inr (Pred u , p))

module _ (fe : funext₀)
         {X : 𝓤 ̇ }
         (x₀ : X)
         (f : ℕ∞  X)
       where

 private
  φ : (x : ℕ∞)  (x  Zero) + is-Succ x  X
  φ x (inl _)        = x₀
  φ x (inr (x' , _)) = f x'

  φ-property-Zero : (c : (Zero  Zero) + is-Succ Zero)
                   φ Zero c  x₀
  φ-property-Zero (inl p) = refl
  φ-property-Zero (inr (x , p)) = 𝟘-elim (Succ-not-Zero (p ⁻¹))

  φ-property-Succ : (u : ℕ∞)
                    (c : (Succ u  Zero) + is-Succ (Succ u))
                    φ (Succ u) c  f u
  φ-property-Succ u (inl p)       = 𝟘-elim (Succ-not-Zero p)
  φ-property-Succ u (inr (x , p)) = ap f (Succ-lc (p ⁻¹))

 ℕ∞-cases : ℕ∞  X
 ℕ∞-cases u = φ u (Zero+Succ fe u)

 ℕ∞-cases-Zero : ℕ∞-cases Zero  x₀
 ℕ∞-cases-Zero = φ-property-Zero (Zero+Succ fe Zero)

 ℕ∞-cases-Succ : (u : ℕ∞)  ℕ∞-cases (Succ u)  f u
 ℕ∞-cases-Succ u = φ-property-Succ u (Zero+Succ fe (Succ u))

Succ-criterion : funext₀
                {u : ℕ∞} {n : }
                n  u
                u  succ n
                u  Succ (ι n)
Succ-criterion fe {u} {n} r s = ℕ∞-to-ℕ→𝟚-lc fe claim
 where
  lemma : (u : ℕ∞) (n : )  n  u  u  succ n
         (i : )  ι u i  ι (Succ (ι n)) i
  lemma u 0 r s 0        = r
  lemma u 0 r s (succ i) = lemma₀ i
     where
      lemma₀ : (i : )  u  succ i
      lemma₀ 0        = s
      lemma₀ (succ i) = [a=₁→b=₁]-gives-[b=₀→a=₀]
                         (≤₂-criterion-converse (pr₂ u (succ i))) (lemma₀ i)
  lemma u (succ n) r s 0 = lemma₁ (succ n) r
     where
      lemma₁ : (n : )  n  u  is-positive u
      lemma₁ 0        t = t
      lemma₁ (succ n) t = lemma₁ n (≤₂-criterion-converse (pr₂ u n) t)
  lemma u (succ n) r s (succ i) = lemma (Pred u) n r s i

  claim : ι u  ι (Succ (ι n))
  claim = dfunext fe (lemma u n r s)

∞-is-not-finite : (n : )    ι n
∞-is-not-finite n s = one-is-not-zero (         =⟨ ap  -  ι - n) s 
                                       ι (ι n) n =⟨ ℕ-to-ℕ∞-diagonal₀ n 
                                                )

not-finite-is-∞ : funext₀  {u : ℕ∞}  ((n : )  u  ι n)  u  
not-finite-is-∞ fe {u} f = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe lemma)
 where
  lemma : (n : )  n  u
  lemma 0        = different-from-₀-equal-₁
                     r  f 0 (is-Zero-equal-Zero fe r))
  lemma (succ n) = different-from-₀-equal-₁
                     r  f (succ n) (Succ-criterion fe (lemma n) r))

\end{code}

Added 13th March 2024.

\begin{code}

ℕ∞-equality-criterion : funext₀
                       (x y : ℕ∞)
                       ((n : )  ι n  x  ι n  y)
                       ((n : )  ι n  y  ι n  x)
                       x  y
ℕ∞-equality-criterion fe₀ x y f g = VII
 where
  I : ¬ (x  y)
  I d = VI
   where
    II : (n : )  x  ι n
    II n e = d (x  =⟨ e  
               ι n =⟨ f n (e ⁻¹) 
               y   )

    III : (n : )  y  ι n
    III  n e = d (x   =⟨ (g n (e ⁻¹))⁻¹ 
                  ι n =⟨ e ⁻¹ 
                  y   )

    IV : x  
    IV = not-finite-is-∞ fe₀ II

    V : y  
    V = not-finite-is-∞ fe₀ III

    VI : 𝟘
    VI = d (x =⟨ IV 
             =⟨ V ⁻¹ 
            y )

  VII : x  y
  VII = ℕ∞-is-¬¬-separated fe₀ x y I

\end{code}

End of 13th March 2024 addition. Back to the ancient past.

\begin{code}

ℕ∞-ddensity : funext₀
             {Y : ℕ∞  𝓤 ̇ }
             ({u : ℕ∞}  is-¬¬-separated (Y u))
             {f g : Π Y}
             ((n : )  f (ι n)  g (ι n))
             f   g 
             (u : ℕ∞)  f u  g u
ℕ∞-ddensity fe {Y} s {f} {g} h h∞ u = s (f u) (g u) c
 where
  a : f u  g u  (n : )  u  ι n
  a t n = contrapositive
            (r : u  ι n)  transport⁻¹  -  f -  g -) r (h n))
           t

  b : f u  g u  u  
  b = contrapositive  (r : u  )  transport⁻¹  -  f -  g -) r h∞)

  c : ¬¬ (f u  g u)
  c = λ t  b t (not-finite-is-∞ fe (a t))

ℕ∞-density : funext₀
            {Y : 𝓤 ̇ }
            is-¬¬-separated Y
            {f g : ℕ∞  Y}
            ((n : )  f (ι n)  g (ι n))
            f   g 
            (u : ℕ∞)  f u  g u
ℕ∞-density fe s = ℕ∞-ddensity fe  {_}  s)

ℕ∞-𝟚-density : funext₀
              {p : ℕ∞  𝟚}
              ((n : )  p (ι n)  )
              p   
              (u : ℕ∞)  p u  
ℕ∞-𝟚-density fe = ℕ∞-density fe 𝟚-is-¬¬-separated

ι𝟙 :  + 𝟙  ℕ∞
ι𝟙 = cases {𝓤₀} {𝓤₀} ι  _  )

ι𝟙-is-embedding : funext₀  is-embedding ι𝟙
ι𝟙-is-embedding fe =
  disjoint-cases-embedding ι  _  ) (ℕ-to-ℕ∞-is-embedding fe) g d
 where
  g : is-embedding  _  )
  g x (* , p) ( , q) = ap  -   , -) (ℕ∞-is-set fe p q)

  d : (n : ) (y : 𝟙)  ι n  
  d n _ p = ∞-is-not-finite n (p ⁻¹)

ι𝟙-dense : funext₀  is-dense ι𝟙
ι𝟙-dense fe (u , f) = g (not-finite-is-∞ fe h)
 where
  g : ¬ (u  )
  g p = f (inr  , (p ⁻¹))

  h : (n : )  ¬ (u  ι n)
  h n p = f (inl n , (p ⁻¹))

\end{code}

There should be a better proof of the following. The idea is simple:
by the above development, u = ι 0 if and only if ι u 0 = 0, and
u = ι (n+1) if and only if n ⊏ u ⊑ n+1.

\begin{code}

finite-isolated : funext₀  (n : )  is-isolated (ι n)
finite-isolated fe n u = is-decidable-eq-sym u (ι n) (f u n)
 where
  f : (u : ℕ∞) (n : )  is-decidable (u  ι n)
  f u 0 = 𝟚-equality-cases g₀ g₁
   where
    g₀ : is-Zero u  is-decidable (u  Zero)
    g₀ r = inl (is-Zero-equal-Zero fe r)

    h : u  Zero  is-Zero u
    h = ap  -  ι - 0)

    g₁ : is-positive u  is-decidable (u  Zero)
    g₁ r = inr (contrapositive h (equal-₁-different-from-₀ r))

  f u (succ n) = 𝟚-equality-cases g₀ g₁
   where
    g : u  ι (succ n)  n  u
    g r = ap  -  ι - n) r  ℕ-to-ℕ∞-diagonal₁ n

    g₀ :  u  n  is-decidable (u  ι (succ n))
    g₀ r = inr (contrapositive g (equal-₀-different-from-₁ r))

    h : u  ι (succ n)  u  succ n
    h r = ap  -  ι - (succ n)) r  ℕ-to-ℕ∞-diagonal₀ (succ n)

    g₁ :  n  u  is-decidable (u  ι (succ n))
    g₁ r = 𝟚-equality-cases g₁₀ g₁₁
     where
      g₁₀ : u  succ n  is-decidable (u  ι (succ n))
      g₁₀ s = inl (Succ-criterion fe r s)

      g₁₁ : succ n  u  is-decidable (u  ι (succ n))
      g₁₁ s = inr (contrapositive h (equal-₁-different-from-₀ s))


is-finite : ℕ∞  𝓤₀ ̇
is-finite u = Σ n   , ι n  u

is-finite' : ℕ∞  𝓤₀ ̇
is-finite' u = Σ n   , u  ι n

size : {u : ℕ∞}  is-finite u  
size (n , r) = n

size-property : {u : ℕ∞} (φ : is-finite u)  ι (size φ)  u
size-property (n , r) = r

being-finite-is-prop : funext₀  (u : ℕ∞)  is-prop (is-finite u)
being-finite-is-prop = ℕ-to-ℕ∞-is-embedding

ℕ-to-ℕ∞-is-finite : (n : )  is-finite (ι n)
ℕ-to-ℕ∞-is-finite n = (n , refl)

Zero-is-finite : is-finite Zero
Zero-is-finite = ℕ-to-ℕ∞-is-finite 0

Zero-is-finite' : funext₀  (u : ℕ∞)  is-Zero u  is-finite u
Zero-is-finite' fe u z = transport⁻¹
                           is-finite
                           (is-Zero-equal-Zero fe z)
                           Zero-is-finite

is-finite-down : (u : ℕ∞)  is-finite (Succ u)  is-finite u
is-finite-down u (0 , r)      = 𝟘-elim (Zero-not-Succ r)
is-finite-down u (succ n , r) = n , Succ-lc r

is-finite-up : (u : ℕ∞)  is-finite u  is-finite (Succ u)
is-finite-up u (n , r) = (succ n , ap Succ r)

is-finite-up' : funext₀  (u : ℕ∞)  is-finite (Pred u)  is-finite u
is-finite-up' fe u i = 𝟚-equality-cases
                          (z : is-Zero u)
                             Zero-is-finite' fe u z)
                          (p : is-positive u)
                             transport⁻¹
                               is-finite
                               (positive-equal-Succ fe p)
                               (is-finite-up (Pred u) i))

is-infinite-∞ : ¬ is-finite 
is-infinite-∞ (n , r) = 𝟘-elim (∞-is-not-finite n (r ⁻¹))

not-finite-is-∞' : funext₀  {u : ℕ∞}  ¬ is-finite u  u  
not-finite-is-∞' fe {u} ν = not-finite-is-∞ fe  n e  ν (n , (e ⁻¹)))

\end{code}

Order on ℕ∞:

\begin{code}

_≼ℕ∞_ : ℕ∞  ℕ∞  𝓤₀ ̇
u ≼ℕ∞ v = (n : )  n  u  n  v

instance
 Curly-Order-ℕ∞-ℕ∞ : Curly-Order ℕ∞ ℕ∞
 _≼_ {{Curly-Order-ℕ∞-ℕ∞}} = _≼ℕ∞_

≼-anti : funext₀  (u v : ℕ∞)  u  v  v  u  u  v
≼-anti fe u v l m = ℕ∞-to-ℕ→𝟚-lc fe γ
 where
  γ : ι u  ι v
  γ = dfunext fe  i  ≤₂-anti (≤₂-criterion (l i)) (≤₂-criterion (m i)))

∞-largest : (u : ℕ∞)  u  
∞-largest u = λ n _  refl

Zero-smallest : (u : ℕ∞)  Zero  u
Zero-smallest u n = λ (p :   )  𝟘-elim (zero-is-not-one p)

Succ-not-≼-Zero : (u : ℕ∞)  ¬ (Succ u  Zero)
Succ-not-≼-Zero u l = zero-is-not-one (l zero refl)

Succ-monotone : (u v : ℕ∞)  u  v  Succ u  Succ v
Succ-monotone u v l 0        p = p
Succ-monotone u v l (succ n) p = l n p

Succ-loc : (u v : ℕ∞)  Succ u  Succ v  u  v
Succ-loc u v l n = l (succ n)

above-Succ-is-positive : (u v : ℕ∞)  Succ u  v  is-positive v
above-Succ-is-positive u v l = l 0 refl

≼-unfold-Succ : funext₀  (u v : ℕ∞)  Succ u  v  Succ u  Succ (Pred v)
≼-unfold-Succ fe u v l = transport  -  Succ u  -)
                          (positive-equal-Succ fe {v}
                            (above-Succ-is-positive u v l)) l

≼-unfold : funext₀  (u v : ℕ∞)
          u  v
          (u  Zero)
         + (Σ w  ℕ∞ , Σ t  ℕ∞ , (u  Succ w) × (v  Succ t) × (w  t))
≼-unfold fe u v l = φ (Zero+Succ fe u) (Zero+Succ fe v)
 where
  φ : (u  Zero) + is-Succ u  (v  Zero) + is-Succ v  _
  φ (inl p)          _                = inl p
  φ (inr (w , refl)) (inl refl)       = 𝟘-elim (Succ-not-≼-Zero w l)
  φ (inr (w , refl)) (inr (t , refl)) = inr (w , t , refl , refl , Succ-loc w t l)

≼-fold : (u v : ℕ∞)
        ((u  Zero)
       + (Σ w  ℕ∞ , Σ t  ℕ∞ , (u  Succ w) × (v  Succ t) × (w  t)))
        u  v
≼-fold Zero      v         (inl refl)                      = Zero-smallest v
≼-fold .(Succ w) .(Succ t) (inr (w , t , refl , refl , l)) = Succ-monotone w t l

max : ℕ∞  ℕ∞  ℕ∞
max (α , r) (β , s) =  i  max𝟚 (α i) (β i)) , t
 where
  t : is-decreasing  i  max𝟚 (α i) (β i))
  t i = max𝟚-preserves-≤ (r i) (s i)

max-comm : funext₀  (u v : ℕ∞)  max u v  max v u
max-comm fe u v = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe  i  max𝟚-comm (ι u i) (ι v i)))

max0-property : (u : ℕ∞)  max Zero u  u
max0-property u = refl

max0-property' : funext₀  (u : ℕ∞)  max u Zero  u
max0-property' fe u = max u Zero =⟨ max-comm fe u Zero 
                      max Zero u =⟨ max0-property u 
                      u       

max∞-property : (u : ℕ∞)  max  u  
max∞-property u = refl

max∞-property' : funext₀  (u : ℕ∞)  max u   
max∞-property' fe u = max u  =⟨ max-comm fe u  
                      max  u =⟨ max∞-property u 
                             

open import Naturals.Order renaming (max to maxℕ ; max-idemp to maxℕ-idemp)

max-Succ : funext₀  (u v : ℕ∞)  Succ (max u v)  max (Succ u) (Succ v)
max-Succ fe u v = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe f)
 where
  f : (i : )
     cons   j  max𝟚 (ι u j) (ι v j)) i
     max𝟚 (cons  (ι u) i) (cons  (ι v) i)
  f 0        = refl
  f (succ i) = refl

max-succ : funext₀  (m : )  max (ι m) (ι (succ m))  ι (succ m)
max-succ fe 0        = refl
max-succ fe (succ m) =
 max (ι (succ m)) (ι (succ (succ m))) =⟨ (max-Succ fe (ι m) (ι (succ m)))⁻¹ 
 Succ (max (ι m) (ι (succ m)))        =⟨ ap Succ (max-succ fe m) 
 Succ (ι (succ m))                    =⟨ refl 
 ι (succ (succ m))                    

max-fin : funext₀  (m n : )  ι (maxℕ m n)  max (ι m) (ι n)
max-fin fe 0 n = (max0-property (ι n))⁻¹
max-fin fe (succ m) 0 = max0-property' fe (ι (succ m)) ⁻¹
max-fin fe (succ m) (succ n) =
 ι (maxℕ (succ m) (succ n))    =⟨ refl 
 ι (succ (maxℕ m n))           =⟨ refl 
 Succ (ι (maxℕ m n))           =⟨ ap Succ (max-fin fe m n) 
 Succ (max (ι m) (ι n))        =⟨ max-Succ fe (ι m) (ι n) 
 max (Succ (ι m)) (Succ (ι n)) =⟨ refl 
 max (ι (succ m)) (ι (succ n)) 

max-idemp : funext₀  (u : ℕ∞)  max u u  u
max-idemp fe₀ u = ℕ∞-to-ℕ→𝟚-lc fe₀ (dfunext fe₀  i  max𝟚-idemp (ι u i)))

min : ℕ∞  ℕ∞  ℕ∞
min (α , r) (β , s) =  i  min𝟚 (α i) (β i)) , t
 where
  t : is-decreasing  i  min𝟚 (α i) (β i))
  t i = min𝟚-preserves-≤ (r i) (s i)

min∞-property : (u : ℕ∞)  min  u  u
min∞-property u = refl

min-comm : funext₀  (u v : ℕ∞)  min u v  min v u
min-comm fe u v = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe  i  min𝟚-comm (ι u i) (ι v i)))

min-idemp : funext₀  (u : ℕ∞)  min u u  u
min-idemp fe₀ u = ℕ∞-to-ℕ→𝟚-lc fe₀ (dfunext fe₀  i  min𝟚-idemp (ι u i)))

min0-property : (u : ℕ∞)  min Zero u  Zero
min0-property u = refl

min0-property' : funext₀  (u : ℕ∞)  min u Zero  Zero
min0-property' fe u = min u Zero =⟨ min-comm fe u Zero 
                      min Zero u =⟨ min0-property u 
                      Zero       

\end{code}

More lemmas about order should be added, but I will do this on demand
as the need arises.

\begin{code}

∞-⊏-largest : (n : )  n  
∞-⊏-largest n = refl

_≺ℕ∞_ : ℕ∞  ℕ∞  𝓤₀ ̇
u ≺ℕ∞ v = Σ n   , (u  ι n) × n  v

instance
 Strict-Curly-Order-ℕ∞-ℕ∞ : Strict-Curly-Order ℕ∞ ℕ∞
 _≺_ {{Strict-Curly-Order-ℕ∞-ℕ∞}} = _≺ℕ∞_

∞-top : (u : ℕ∞)  ¬ (  u)
∞-top u (n , r , l) = ∞-is-not-finite n r

below-isolated : funext₀  (u v : ℕ∞)  u  v  is-isolated u
below-isolated fe u v (n , r , l) = transport⁻¹
                                     is-isolated
                                     r
                                     (finite-isolated fe n)

≺-prop-valued : funext₀  (u v : ℕ∞)  is-prop (u  v)
≺-prop-valued fe u v (n , r , a) (m , s , b) =
 to-Σ-= (ℕ-to-ℕ∞-lc (r ⁻¹  s) ,
          to-Σ-= (ℕ∞-is-set fe _ _ ,
                  𝟚-is-set _ _))

⊏-gives-≺ : (n : ) (u : ℕ∞)  n  u  ι n  u
⊏-gives-≺ n u a = n , refl , a

≺-gives-⊏ : (n : ) (u : ℕ∞)  ι n  u  n  u
≺-gives-⊏ n u (m , r , a) = transport⁻¹  k  k  u) (ℕ-to-ℕ∞-lc r) a

∞-≺-largest : (n : )  ι n  
∞-≺-largest n = n , refl , ∞-⊏-largest n

≺-implies-finite : (a b : ℕ∞)  a  b  is-finite a
≺-implies-finite a b (n , p , _) = n , (p ⁻¹)

ℕ-to-ℕ∞-≺-diagonal : (n : )  ι n  ι (succ n)
ℕ-to-ℕ∞-≺-diagonal n = n , refl , ℕ-to-ℕ∞-diagonal₁ n

finite-≺-Succ : (a : ℕ∞)  is-finite a  a  Succ a
finite-≺-Succ a (n , p) = transport (_≺ Succ a) p
                            (transport (ι n ≺_) (ap Succ p)
                              (ℕ-to-ℕ∞-≺-diagonal n))

≺-Succ : (a b : ℕ∞)  a  b  Succ a  Succ b
≺-Succ a b (n , p , q) = succ n , ap Succ p , q

<-gives-⊏ : (m n : )  m < n   m  ι n
<-gives-⊏ 0        0        l = 𝟘-elim l
<-gives-⊏ 0        (succ n) l = refl
<-gives-⊏ (succ m) 0        l = 𝟘-elim l
<-gives-⊏ (succ m) (succ n) l = <-gives-⊏ m n l

⊏-gives-< : (m n : )   m  ι n  m < n
⊏-gives-< 0        0        l = 𝟘-elim (zero-is-not-one l)
⊏-gives-< 0        (succ n) l = zero-least n
⊏-gives-< (succ m) 0        l = 𝟘-elim (zero-is-not-one l)
⊏-gives-< (succ m) (succ n) l = ⊏-gives-< m n l

⊏-back : (u : ℕ∞) (n : )  succ n  u  n  u
⊏-back u n = ≤₂-criterion-converse (pr₂ u n)

⊏-trans'' : (u : ℕ∞) (n : )  (m : )  m  n  n  u  m  u
⊏-trans'' u = regress  n  n  u) (⊏-back u)

⊏-trans' : (m : ) (n : ) (u : ℕ∞)   m < n  n  u  m  u
⊏-trans' m n u l = ⊏-trans'' u n m (≤-trans m (succ m) n (≤-succ m) l)

⊏-trans : (m n : ) (u : ℕ∞)  m  ι n  n  u  m  u
⊏-trans m n u a = ⊏-trans' m n u (⊏-gives-< m n a)

≺-trans : is-transitive _≺_
≺-trans u v w (m , r , a) (n , s , b) = m , r , c
 where
  c : m  w
  c = ⊏-trans m n w (transport  t  m  t) s a) b

≺-Succ-r : (a b : ℕ∞)  a  b  a  Succ b
≺-Succ-r a b l = ≺-trans a (Succ a) (Succ b)
                     (finite-≺-Succ a (≺-implies-finite a b l))
                     (≺-Succ a b l)

≺≼-gives-≺ : (x y z : ℕ∞)  x  y  y  z  x  z
≺≼-gives-≺ x y z (n , p , q) le = n , p , le n q

finite-accessible : (n : )  is-accessible _≺_ (ι n)
finite-accessible = course-of-values-induction  n  is-accessible _≺_ (ι n)) φ
 where
  φ : (n : )
     ((m : )  m < n  is-accessible _≺_ (ι m))
     is-accessible _≺_ (ι n)
  φ n σ = acc τ
   where
    τ : (u : ℕ∞)  u  ι n  is-accessible _≺_ u
    τ u (m , r , l) = transport⁻¹ (is-accessible _≺_) r (σ m (⊏-gives-< m n l))

≺-well-founded : is-well-founded _≺_
≺-well-founded v = acc σ
 where
  σ : (u : ℕ∞)  u  v  is-accessible _≺_ u
  σ u (n , r , l) = transport⁻¹ (is-accessible _≺_) r (finite-accessible n)

≺-extensional : funext₀  is-extensional _≺_
≺-extensional fe u v l m = γ
 where
  f : (i : )  i  u  i  v
  f i a = ≺-gives-⊏ i v (l (ι i) (⊏-gives-≺ i u a))

  g : (i : )  i  v  i  u
  g i a = ≺-gives-⊏ i u (m (ι i) (⊏-gives-≺ i v a))

  h : (i : )  ι u i  ι v i
  h i = ≤₂-anti (≤₂-criterion (f i)) (≤₂-criterion (g i))

  γ : u  v
  γ = ℕ∞-to-ℕ→𝟚-lc fe (dfunext fe h)

ℕ∞-ordinal : funext₀  is-well-order _≺_
ℕ∞-ordinal fe = ≺-prop-valued fe , ≺-well-founded , ≺-extensional fe , ≺-trans

\end{code}

The following two functions are not needed anymore, as we have the
stronger fact, proved above, that ≺ is well founded:

\begin{code}

≺-well-founded₂ : funext₀  is-well-founded₂ _≺_
≺-well-founded₂ fe p φ = ℕ∞-𝟚-density fe a b
 where
  γ : (n : )  ((m : )  m < n  p (ι m)  )  p (ι n)  
  γ n g = φ (ι n) h
   where
    h : (u : ℕ∞)  u  ι n  p u  
    h u (m , r , l) = transport⁻¹  v  p v  ) r (g m (⊏-gives-< m n l))

  a : (n : )  p (ι n)  
  a = course-of-values-induction  n  p (ι n)  ) γ

  f : (u : ℕ∞)  u    p u  
  f u (n , r , l) = transport⁻¹  v  p v  ) r (a n)

  b : p   
  b = φ  f

ℕ∞-ordinal₂ : funext₀  is-well-order₂ _≺_
ℕ∞-ordinal₂ fe = ≺-prop-valued fe ,
                 ≺-well-founded₂ fe ,
                 ≺-extensional fe ,
                 ≺-trans

ℕ-to-ℕ∞-lemma : funext₀
               (u : ℕ∞)
                (n : )
               u  n
               Σ m   , (m  n) × (u  ι m)
ℕ-to-ℕ∞-lemma fe u 0        p = 0 , ≤-refl 0 , is-Zero-equal-Zero fe p
ℕ-to-ℕ∞-lemma fe u (succ n) p = g (𝟚-is-discrete (ι u n) )
 where
  IH : u  n  Σ m   , (m  n) × (u  ι m)
  IH = ℕ-to-ℕ∞-lemma fe u n

  g : is-decidable(u  n)  Σ m   , (m  succ n) × (u  ι m)
  g (inl q) = pr₁(IH q) , ≤-trans (pr₁ (IH q)) n (succ n)
                           (pr₁ (pr₂ (IH q)))
                           (≤-succ n) , pr₂ (pr₂ (IH q))
  g (inr φ) = succ n , ≤-refl n , s
    where
     q : n  u
     q = different-from-₀-equal-₁ φ

     s : u  Succ (ι n)
     s = Succ-criterion fe {u} {n} q p

≺-cotransitive : funext₀  cotransitive _≺_
≺-cotransitive fe u v w (n , r , a) = g (𝟚-is-discrete (ι w n) )
 where
  g : is-decidable (n  w)  (u  w) + (w  v)
  g (inl a) = inl (n , r , a)
  g (inr f) = inr (m , s , ⊏-trans'' v n m l a)
   where
    b : w  n
    b = not-⊏-is-⊒ {n} {w} f

    σ : Σ m   , (m  n) × (w  ι m)
    σ = ℕ-to-ℕ∞-lemma fe w n b

    m : 
    m = pr₁ σ

    l : m  n
    l = pr₁ (pr₂ σ)

    s : w  ι m
    s = pr₂ (pr₂ σ)

ℕ∞-𝟚-order-separated : funext₀  𝟚-order-separated _≺_
ℕ∞-𝟚-order-separated fe x y (n , r , l) =  p , t , h
 where
  p : ℕ∞  𝟚
  p z = ι z n

  e : ι x n  
  e = transport⁻¹  z  p z  ) r (ℕ-to-ℕ∞-diagonal₀ n)

  t : ι x n <₂ ι y n
  t = <₂-criterion e l

  f : (u v : ℕ∞)  u  v  p u  p v
  f u v (n' , r' , l') = ≤₂-criterion ϕ
   where
    ϕ : ι u n    p v  
    ϕ s = ⊏-trans' n n' v b l'
     where
      a : p (ι n')  
      a = transport  z  p z  ) r' s

      b : n < n'
      b = ⊏-gives-< n n' a

  g : (u v : ℕ∞)  p u <₂ p v  u  v
  g u v l = γ (<₂-criterion-converse l)
   where
    γ : (p u  ) × (p v  )  u  v
    γ (a , b) = pr₁ c , pr₂ (pr₂ c) , (⊏-trans'' v n (pr₁ c) (pr₁ (pr₂ c)) b)
     where
      c : Σ m   , (m  n) × (u  ι m)
      c = ℕ-to-ℕ∞-lemma fe u n a

  h : (u v : ℕ∞)  (u  v  p u  p v) × (p u <₂ p v  u  v)
  h u v = f u v , g u v

ℕ-to-ℕ∞-order-preserving : (m n : )  m < n  ι m  ι n
ℕ-to-ℕ∞-order-preserving m n l = m , refl , <-gives-⊏ m n l

ℕ-to-ℕ∞-order-reflecting : (m n : )  ι m  ι n  m < n
ℕ-to-ℕ∞-order-reflecting m n (m' , p , l') = ⊏-gives-< m n l
 where
  l : m  ι n
  l = transport⁻¹  -  -  ι n) (ℕ-to-ℕ∞-lc p) l'

{- TODO

<-gives-≺ : (m n : ℕ) → ι m ≺ ι n → m < n
<-gives-≺ = ?

⊏-gives-≺ : (m : ℕ) (u : ℕ∞) → m ⊏ u → ι m ≺ u
⊏-gives-≺ = ?
-}

\end{code}

Added 25 June 2018. This may be placed somewhere else in the future.
A variation of ℕ∞, to be investigated.

\begin{code}

module investigate-this-in-the-future-in-some-other-file where

 open import UF.SubtypeClassifier

 Ν∞ : 𝓤₁ ̇
 Ν∞ = Σ A  (  Ω 𝓤₀), ((n : )  A (succ n) holds  A n holds)

\end{code}

Added 28 July 2018:

\begin{code}

≼-is-prop-valued : funext₀  (u v : ℕ∞)  is-prop (u  v)
≼-is-prop-valued fe u v = Π-is-prop fe  n  Π-is-prop fe  l  𝟚-is-set))

≼-gives-not-≺ : (u v : ℕ∞)  u  v  ¬ (v  u)
≼-gives-not-≺ u v l (n , (p , m)) = zero-is-not-one (e ⁻¹  d)
 where
  a : v  u
  a = transport  -  -  u) (p ⁻¹) (⊏-gives-≺ n u m)

  k : 
  k = pr₁ a

  b : v  ι k
  b = pr₁ (pr₂ a)

  c : k  v
  c = l k (pr₂ (pr₂ a))

  d : ι (ι k) k  
  d = transport  -  k  -) b c

  e : ι (ι k) k  
  e = ℕ-to-ℕ∞-diagonal₀ k

not-≺-gives-≼ : funext₀  (u v : ℕ∞)  ¬ (v  u)  u  v
not-≺-gives-≼ fe u v φ n l = 𝟚-equality-cases f g
 where
  f : v  n  n  v
  f m = 𝟘-elim (φ (k , (p , b)))
   where
    k : 
    k = pr₁ (ℕ-to-ℕ∞-lemma fe v n m)

    a : k  n
    a = pr₁ (pr₂ (ℕ-to-ℕ∞-lemma fe v n m))

    p : v  ι k
    p = pr₂ (pr₂ (ℕ-to-ℕ∞-lemma fe v n m))

    b : k  u
    b = ⊏-trans'' u n k a l

  g : n  v  n  v
  g = id

\end{code}

Characterization of ⊏.

\begin{code}

⊏-positive : (n : ) (u : ℕ∞)  n  u  is-positive u
⊏-positive n u = ⊏-trans'' u n 0 (zero-least n)

⊏-charac→ : funext₀
           (n : ) (u : ℕ∞)
           n  u
           Σ v  ℕ∞ , u  (Succ ^ (succ n)) v
⊏-charac→ fe₀ 0        u l = Pred u , (positive-equal-Succ fe₀ l)
⊏-charac→ fe₀ (succ n) u l = γ
 where
  IH : Σ v  ℕ∞ , Pred u  (Succ ^ (succ n)) v
  IH = ⊏-charac→ fe₀ n (Pred u) l

  v : ℕ∞
  v = pr₁ IH

  p : u  (Succ ^ (succ (succ n))) v
  p = u                           =⟨ I 
      Succ (Pred u)               =⟨ II 
      (Succ ^ (succ (succ n))) v  
       where
        I  = positive-equal-Succ fe₀ (⊏-positive (succ n) u l)
        II = ap Succ (pr₂ IH)

  γ : Σ v  ℕ∞ , u  (Succ ^ (succ (succ n))) v
  γ = v , p

⊏-charac← : funext₀  (n : ) (u : ℕ∞)
           (Σ v  ℕ∞ , u  (Succ ^ (succ n)) v)  n  u
⊏-charac← fe₀ 0        u (v , refl) = refl
⊏-charac← fe₀ (succ n) u (v , refl) = γ
 where
  IH : n  Pred u
  IH = ⊏-charac← fe₀ n (Pred u) (v , refl)

  γ : succ n  u
  γ = IH

\end{code}

Added 19th April 2022.

\begin{code}

bounded-is-finite : funext₀
                   (n : ) (u : ℕ∞)
                   u  n
                   is-finite u
bounded-is-finite fe n u le = case ℕ-to-ℕ∞-lemma fe u n le of
                                (m , _ , p)  m , (p ⁻¹))

⊑-succ-gives-≺ : funext₀
                (n : ) (u : ℕ∞)
                u  n
                u  ι (succ n)
⊑-succ-gives-≺ fe n u les = f (ℕ-to-ℕ∞-lemma fe u n les)
 where
  f : (Σ m   , (m  n) × (u  ι m))  u  ι (succ n)
  f (m , le , p) = m , p , a
   where
    a : m  ι (succ n)
    a = <-gives-⊏ m (succ n) le

finite-trichotomous : funext₀
                     (n : ) (u : ℕ∞)
                     (ι n  u) + (ι n  u) + (u  ι n)
finite-trichotomous fe 0 u =
 𝟚-equality-cases
   (l : is-Zero u)  inr (inl ((is-Zero-equal-Zero fe l)⁻¹)))
   (m : is-positive u)
         inl (⊏-gives-≺ 0 u m))
finite-trichotomous fe (succ n) u =
 𝟚-equality-cases
   (l : u  succ n)
         𝟚-equality-cases
            (a : u  n)  inr (inr (⊑-succ-gives-≺ fe n u a)))
            (b : n  u)  inr (inl ((Succ-criterion fe b l)⁻¹))))
   (m : succ n  u)
         inl (⊏-gives-≺ (succ n) u m))

\end{code}