\begin{code} {-# OPTIONS --safe --without-K #-} module UF.Retracts where open import MLTT.AlternativePlus open import MLTT.Spartan open import UF.Base open import UF.Subsingletons has-section : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β π€ β π₯ Μ has-section r = Ξ£ s κ (codomain r β domain r), r β s βΌ id section-of : {X : π€ Μ } {Y : π₯ Μ } (r : X β Y) β has-section r β (Y β X) section-of r (s , rs) = s section-equation : {X : π€ Μ } {Y : π₯ Μ } (r : X β Y) β (h : has-section r) β r β section-of r h βΌ id section-equation r (s , rs) = rs is-section : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β π€ β π₯ Μ is-section s = Ξ£ r κ (codomain s β domain s), r β s βΌ id has-retraction : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β π€ β π₯ Μ has-retraction = is-section retraction-of : {X : π€ Μ } {Y : π₯ Μ } (r : X β Y) β has-retraction r β (Y β X) retraction-of s (r , rs) = r retraction-equation : {X : π€ Μ } {Y : π₯ Μ } (s : X β Y) β (h : has-retraction s) β retraction-of s h β s βΌ id retraction-equation s (r , rs) = rs sections-are-lc : {X : π€ Μ } {Y : π₯ Μ } (s : X β Y) β is-section s β left-cancellable s sections-are-lc s (r , rs) {x} {x'} p = (rs x)β»ΒΉ β ap r p β rs x' retract_of_ : π€ Μ β π₯ Μ β π€ β π₯ Μ retract Y of X = Ξ£ r κ (X β Y) , has-section r \end{code} Below we introduce the synonym "Y β X" for "retract Y of X" and convenient notation for working with chains of compositions of retractions. \begin{code} retraction : {X : π€ Μ } {Y : π₯ Μ } β retract X of Y β (Y β X) retraction (r , s , rs) = r section : {X : π€ Μ } {Y : π₯ Μ } β retract X of Y β (X β Y) section (r , s , rs) = s retraction-idempotency : {X : π€ Μ } {Y : π₯ Μ } β (Ο : retract Y of X) β idempotent-map (section Ο β retraction Ο) retraction-idempotency (r , s , rs) x = s (r (s (r x))) οΌβ¨ ap s (rs (r x)) β© s (r x) β section-is-section : {X : π€ Μ } {Y : π₯ Μ } β (Ο : retract X of Y) β is-section (section Ο) section-is-section (r , s , rs) = r , rs retract-condition : {X : π€ Μ } {Y : π₯ Μ } (Ο : retract X of Y) β retraction Ο β section Ο βΌ id retract-condition (r , s , rs) = rs retraction-has-section : {X : π€ Μ } {Y : π₯ Μ } (Ο : retract X of Y) β has-section (retraction Ο) retraction-has-section (r , h) = h retract-of-singleton : {X : π€ Μ } {Y : π₯ Μ } β retract Y of X β is-singleton X β is-singleton Y retract-of-singleton (r , s , rs) (c , Ο) = r c , (Ξ» y β ap r (Ο (s y)) β rs y) retract-of-prop : {X : π€ Μ } {Y : π₯ Μ } β retract Y of X β is-prop X β is-prop Y retract-of-prop (r , s , rs) = subtypes-of-props-are-props' s (sections-are-lc s (r , rs)) identity-retraction : {X : π€ Μ } β retract X of X identity-retraction = id , id , Ξ» x β refl has-section-closed-under-βΌ : {X : π€ Μ } {Y : π₯ Μ } (f g : X β Y) β has-section f β g βΌ f β has-section g has-section-closed-under-βΌ {π€} {π₯} {X} {Y} f g (s , fs) h = (s , Ξ» y β g (s y) οΌβ¨ h (s y) β© f (s y) οΌβ¨ fs y β© y β) has-section-closed-under-βΌ' : {X : π€ Μ } {Y : π₯ Μ } {f g : X β Y} β has-section f β f βΌ g β has-section g has-section-closed-under-βΌ' ise h = has-section-closed-under-βΌ _ _ ise (Ξ» x β (h x)β»ΒΉ) is-section-closed-under-βΌ : {X : π€ Μ } {Y : π₯ Μ } (f g : X β Y) β is-section f β g βΌ f β is-section g is-section-closed-under-βΌ {π€} {π₯} {X} {Y} f g (r , rf) h = (r , Ξ» x β r (g x) οΌβ¨ ap r (h x) β© r (f x) οΌβ¨ rf x β© x β) is-section-closed-under-βΌ' : {X : π€ Μ } {Y : π₯ Μ } {f g : X β Y} β is-section f β f βΌ g β is-section g is-section-closed-under-βΌ' ise h = is-section-closed-under-βΌ _ _ ise (Ξ» x β (h x)β»ΒΉ) \end{code} Surjection expressed in Curry-Howard logic amounts to retraction. \begin{code} has-section' : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β π€ β π₯ Μ has-section' f = (y : codomain f) β fiber f y retract_Of_ : π€ Μ β π₯ Μ β π€ β π₯ Μ retract Y Of X = Ξ£ f κ (X β Y) , has-section' f retract-of-gives-retract-Of : {X : π€ Μ } {Y : π₯ Μ } β retract Y of X β retract Y Of X retract-of-gives-retract-Of {π€} {π₯} {X} {Y} Ο = (retraction Ο , h) where h : (y : Y) β Ξ£ x κ X , retraction Ο x οΌ y h y = section Ο y , retract-condition Ο y retract-Of-gives-retract-of : {X : π€ Μ } {Y : π₯ Μ } β retract Y Of X β retract Y of X retract-Of-gives-retract-of {π€} {π₯} {X} {Y} (f , hass) = (f , Ο) where Ο : Ξ£ s κ (Y β X) , f β s βΌ id Ο = (Ξ» y β prβ (hass y)) , (Ξ» y β prβ (hass y)) retracts-compose : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } β retract Y of X β retract Z of Y β retract Z of X retracts-compose (r , s , rs) (r' , s' , rs') = r' β r , s β s' , Ξ» z β r' (r (s (s' z))) οΌβ¨ ap r' (rs (s' z)) β© r' (s' z) οΌβ¨ rs' z β© z β Γ-retract : {X : π€ Μ } {Y : π₯ Μ } {A : π¦ Μ } {B : π£ Μ } β retract X of A β retract Y of B β retract (X Γ Y) of (A Γ B) Γ-retract {π€} {π₯} {π¦} {π£} {X} {Y} {A} {B} (r , s , rs) (t , u , tu) = f , g , fg where f : A Γ B β X Γ Y f (a , b) = (r a , t b) g : X Γ Y β A Γ B g (x , y) = s x , u y fg : (z : X Γ Y) β f (g z) οΌ z fg (x , y) = to-Γ-οΌ (rs x) (tu y) +-retract : {X : π€ Μ } {Y : π¦ Μ } {A : π₯ Μ } {B : π£ Μ } β retract X of A β retract Y of B β retract (X + Y) of (A + B) +-retract {π€} {π₯} {π¦} {π£} {X} {Y} {A} {B} (r , s , rs) (t , u , tu) = f , g , fg where f : A + B β X + Y f (inl a) = inl (r a) f (inr b) = inr (t b) g : X + Y β A + B g (inl x) = inl (s x) g (inr y) = inr (u y) fg : (p : X + Y) β f (g p) οΌ p fg (inl x) = ap inl (rs x) fg (inr y) = ap inr (tu y) +'-retract-of-+ : {X Y : π€ Μ } β retract (X +' Y) of (X + Y) +'-retract-of-+ {π€} {X} {Y} = f , g , fg where f : X + Y β X +' Y f (inl x) = β , x f (inr y) = β , y g : X +' Y β X + Y g (β , x) = inl x g (β , y) = inr y fg : (z : X +' Y) β f (g z) οΌ z fg (β , x) = refl fg (β , y) = refl +-retract-of-+' : {X Y : π€ Μ } β retract (X + Y) of (X +' Y) +-retract-of-+' {π€} {X} {Y} = g , f , gf where f : X + Y β X +' Y f (inl x) = β , x f (inr y) = β , y g : X +' Y β X + Y g (β , x) = inl x g (β , y) = inr y gf : (z : X + Y) β g (f z) οΌ z gf (inl x) = refl gf (inr y) = refl +'-retract : {X Y : π€ Μ } {A B : π₯ Μ } β retract X of A β retract Y of B β retract (X +' Y) of (A +' B) +'-retract {π€} {π₯} {X} {Y} {A} {B} (r , s , rs) (t , u , tu) = f , g , fg where f : A +' B β X +' Y f (β , a) = β , r a f (β , b) = β , t b g : X +' Y β A +' B g (β , x) = β , s x g (β , y) = β , u y fg : (p : X +' Y) β f (g p) οΌ p fg (β , x) = ap (Ξ» - β (β , -)) (rs x) fg (β , y) = ap (Ξ» - β (β , -)) (tu y) Ξ£-reindex-retract : {X : π€ Μ } {Y : π₯ Μ } {A : X β π¦ Μ } (r : Y β X) β has-section r β retract (Ξ£ A) of (Ξ£ (A β r)) Ξ£-reindex-retract {π€} {π₯} {π¦} {X} {Y} {A} r (s , rs) = Ξ³ , Ο , Ξ³Ο where Ξ³ : (Ξ£ y κ Y , A (r y)) β Ξ£ A Ξ³ (y , a) = (r y , a) Ο : Ξ£ A β Ξ£ y κ Y , A (r y) Ο (x , a) = (s x , transportβ»ΒΉ A (rs x) a) Ξ³Ο : (Ο : Ξ£ A) β Ξ³ (Ο Ο) οΌ Ο Ξ³Ο (x , a) = to-Ξ£-οΌ (rs x , p) where p : transport A (rs x) (transportβ»ΒΉ A (rs x) a) οΌ a p = back-and-forth-transport (rs x) Ξ£-reindex-retract' : {X : π€ Μ } {Y : π₯ Μ } {A : X β π¦ Μ } β (Ο : retract X of Y) β retract (Ξ£ x κ X , A x) of (Ξ£ y κ Y , A (retraction Ο y)) Ξ£-reindex-retract' (r , s , rs) = Ξ£-reindex-retract r (s , rs) Ξ£-retract : {X : π€ Μ } (A : X β π₯ Μ ) (B : X β π¦ Μ ) β ((x : X) β retract (A x) of (B x)) β retract (Ξ£ A) of (Ξ£ B) Ξ£-retract {π€} {π₯} {π¦} {X} A B Ο = NatΞ£ R , NatΞ£ S , rs where R : (x : X) β B x β A x R x = retraction (Ο x) S : (x : X) β A x β B x S x = section (Ο x) RS : (x : X) (a : A x) β R x (S x a) οΌ a RS x = retract-condition (Ο x) rs : (Ο : Ξ£ A) β NatΞ£ R (NatΞ£ S Ο) οΌ Ο rs (x , a) = to-Ξ£-οΌ' (RS x a) retract-π+π-of-π : retract π + π of π retract-π+π-of-π = f , (g , fg) where f : π β π {π€β} + π {π€β} f = π-cases (inl β) (inr β) g : π + π β π g = cases (Ξ» x β β) (Ξ» x β β) fg : (x : π + π) β f (g x) οΌ x fg (inl β) = refl fg (inr β) = refl \end{code} TODO. Several retractions here are actually equivalences. So some code should be generalized and moved to an equivalences module. Similarly, some retracts proved here are also shown as equivalences in other modules, and hence there is some amount of repetition that should be removed. This is the result of (1) merging initially independent developments, and (2) work over many years with uncontrolled growth. \begin{code} Ξ£-retractβ : {X : π€ Μ } {Y : X β π₯ Μ } {A : π¦ Μ } {B : π£ Μ } β retract X of A β ((x : X) β retract (Y x) of B) β retract (Ξ£ Y) of (A Γ B) Ξ£-retractβ {π€} {π₯} {π¦} {π£} {X} {Y} {A} {B} (r , s , rs) R = f , g , gf where Ο : (x : X) β B β Y x Ο x = retraction (R x) Ξ³ : (x : X) β Y x β B Ξ³ x = section (R x) ΟΞ³ : (x : X) β (y : Y x) β Ο x (Ξ³ x y) οΌ y ΟΞ³ x = retract-condition (R x) f : A Γ B β Ξ£ Y f (a , b) = r a , Ο (r a) b g : Ξ£ Y β A Γ B g (x , y) = s x , Ξ³ x y gf : (z : Ξ£ Y) β f (g z) οΌ z gf (x , y) = to-Ξ£-οΌ (rs x , l (rs x)) where l : {x' : X} (p : x' οΌ x) β transport Y p (Ο x' (Ξ³ x y)) οΌ y l refl = ΟΞ³ x y retract-π+π-of-β : retract π + π of β retract-π+π-of-β = r , s , rs where r : β β π + π r zero = inl β r (succ _) = inr β s : π + π β β s (inl β) = zero s (inr β) = succ zero rs : (z : π {π€β} + π {π€β}) β r (s z) οΌ z rs (inl β) = refl rs (inr β) = refl \end{code} Added 5th March 2019. Notation for composing retracts. I should have added this ages ago to make the above proofs more readable. \begin{code} _β_ : π€ Μ β π₯ Μ β π€ β π₯ Μ Y β X = retract Y of X _ββ¨_β©_ : (X : π€ Μ ) {Y : π₯ Μ } {Z : π¦ Μ } β X β Y β Y β Z β X β Z _ ββ¨ d β© e = retracts-compose e d β-refl : (X : π€ Μ ) β X β X β-refl {π€} X = identity-retraction {π€} {X} _β : (X : π€ Μ ) β X β X _β = β-refl \end{code} Added 20 February 2020 by Tom de Jong. \begin{code} ap-of-section-is-section : {X : π€ Μ } {Y : π₯ Μ } (s : X β Y) β is-section s β (x x' : X) β is-section (ap s {x} {x'}) ap-of-section-is-section {π€} {π₯} {X} {Y} s (r , rs) x x' = Ο , Οap where Ο : s x οΌ s x' β x οΌ x' Ο q = x οΌβ¨ (rs x) β»ΒΉ β© r (s x) οΌβ¨ ap r q β© r (s x') οΌβ¨ rs x' β© x' β Οap : (p : x οΌ x') β Ο (ap s p) οΌ p Οap p = Ο (ap s p) οΌβ¨ by-definition β© (rs x) β»ΒΉ β (ap r (ap s p) β rs x') οΌβ¨ i β© (rs x) β»ΒΉ β ap r (ap s p) β rs x' οΌβ¨ ii β© (rs x) β»ΒΉ β ap (r β s) p β rs x' οΌβ¨ iii β© ap id p οΌβ¨ (ap-id-is-id' p)β»ΒΉ β© p β where i = βassoc ((rs x) β»ΒΉ) (ap r (ap s p)) (rs x') β»ΒΉ ii = ap (Ξ» - β (rs x) β»ΒΉ β - β rs x') (ap-ap s r p) iii = homotopies-are-natural'' (r β s) id rs {x} {x'} {p} Ξ£-section-retract : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } (Ο : Y β Z) (g : X β Y) β (y : Y) β fiber g y β fiber (section Ο β g) (section Ο y) Ξ£-section-retract {π€} {π₯} {π¦} {X} {Y} {Z} (r , s , rs) g y = Ξ£-retract (Ξ» x β g x οΌ y) (Ξ» x β s (g x) οΌ s y) Ξ³ where Ξ³ : (x : X) β (g x οΌ y) β (s (g x) οΌ s y) Ξ³ x = Ο , (Ο , ΟΟ) where Ο : g x οΌ y β s (g x) οΌ s y Ο = ap s Ο : s (g x) οΌ s y β g x οΌ y Ο = prβ (ap-of-section-is-section s (r , rs) (g x) y) ΟΟ : (p : g x οΌ y) β Ο (Ο p) οΌ p ΟΟ = prβ (ap-of-section-is-section s ((r , rs)) (g x) y) \end{code} Added 8 August 2024 by Tom de Jong. \begin{code} οΌ-retract : {X : π€ Μ } {Y : π₯ Μ } (s : X β Y) β is-section s β (x x' : X) β (x οΌ x') β (s x οΌ s x') οΌ-retract s s-sect x x' = Ο , ap s , Ξ· where Ο : s x οΌ s x' β x οΌ x' Ο = retraction-of (ap s) (ap-of-section-is-section s s-sect x x') Ξ· : Ο β ap s βΌ id Ξ· = retraction-equation (ap s) (ap-of-section-is-section s s-sect x x') \end{code} Fixities: \begin{code} infix 0 _β_ infix 1 _β infixr 0 _ββ¨_β©_ \end{code}