module J-AC-N where
open import Logic
open import LogicalFacts
open import JK-LogicalFacts
open import Naturals
open import Addition
open import JK-Monads
open import Choice
open import Equality
open import J-Shift
J-AC-ℕ : {R : Ω} {X : ℕ → Set} {P : (n : ℕ) → X n → Ω} →
(∀(n : ℕ) → J∃ \(x : X n) → P n x)
→ J∃ \(f : ((n : ℕ) → X n)) → ∀(n : ℕ) → P n (f n)
J-AC-ℕ {R} = (J-functor {R} AC) ∘ J-∀-shift
J-∀-double-shift : {R : Ω} {P : ℕ → ℕ → ℕ → Ω} →
(∀(n : ℕ) → ∀(x : ℕ) → J∃ \(y : ℕ) → P n x y) →
J(∀(n : ℕ) → ∀(x : ℕ) → ∃ \(y : ℕ) → P n x y)
J-∀-double-shift {R} f = J-∀-shift {R} (λ n → J-∀-shift (f n))
J-DC-ℕ : {R : Ω} {P : ℕ → ℕ → ℕ → Ω} →
∀(x₀ : ℕ) →
(∀(n : ℕ) → ∀(x : ℕ) → J∃ \(y : ℕ) → P n x y) →
J∃ \(α : ℕ → ℕ) → α O ≡ x₀ ∧ (∀(n : ℕ) → P n (α n) (α(n + 1)))
J-DC-ℕ {R} x₀ f = (J-functor {R} (DC x₀)) (J-∀-double-shift f)