module JK-Monads where

open import Logic
open import LogicalFacts
open import Equality

-----------------------------------------------
--                                           --
-- The selection and continuation monads.    --
--                                           --
-----------------------------------------------

J : {R : Ω}  Ω  Ω
J {R} A = (A  R)  A

K : {R : Ω}  Ω  Ω
K {R} A = (A  R)  R


-- The monads we'll consider are, for a parameter R fixed in
-- advance, or passed around, 
--
--      T A = J R A,
-- and
--      T A = K R A.
--

-- This will be a monad morphism:

J-K :  {R A : Ω} 
---
       J {R} A  K A

J-K ε p = p(ε p)


-- Under a (necessary) hypothesis, the following goes in the direction
-- opposite to J-K, but is not a morphism.  (Preservation of the unit
-- fails.)


K-J :  {R A : Ω} 
---
       (R  A)      -- efq (ex falso quodlibet)
       K A  J A

K-J efq φ = efq  φ


-- Notational conventions: 
--
--   +-------------+---------------------+
--   |   proofs of |  are ranged over by |
--   +-------------+---------------------+
--   |     J R A   |    ε                |
--   |     K R A   |    φ                |
--   |     A→R     |    p                |
--   +-------------+---------------------+
--
-- For variables ranging over sequences,
-- we append the suffix "s".


J-functor : {R A B : Ω} 
---------
            (A  B)  J {R} A  J B

J-functor f ε = λ q  f(ε(q  f))



K-functor : {R A B : Ω} 
---------
            (A  B)  K {R} A  K B

K-functor f φ = λ q  φ(q  f)



------------
--        --
-- Units  --
--        --
------------


ηJ : {R A : Ω} 
--
     A  J {R} A

ηJ a = λ p  a


ηK : {R A : Ω} 
--
     A  K {R} A

ηK a = λ p  p a


-----------------------
--                   --
--  Multiplications  --
--                   --
-----------------------


μJ : {R A : Ω} 
-- 
     J(J A)  J A

μJ {R} E = λ p  E  ε  J-K {R} ε p) p


μK : {R A : Ω} 
-- 
     K(K A)  K {R} A

μK Φ = λ p  Φ  φ  φ p)


----------------------------------------------------------
--                                                      --
--                                                      --
-- Monad laws for J (for K they are well known to hold) --
--                                                      --
----------------------------------------------------------


-- The proofs of the laws are automatic. We just need to write the
-- equations we want to prove. Then agda normalizes each side and sees
-- that they are equal, and accepts our proof "reflexivity".


J-functoriality₀ : {R A : Ω} 
----------------
                   J-functor id  id {J {R} A}

J-functoriality₀ = reflexivity


J-functoriality₁ : {R A B C : Ω} 
----------------
                   (f : (A  B))  (g : (B  C)) 
                   J-functor {R} (g  f)  (J-functor g)  (J-functor f)

J-functoriality₁ f g = reflexivity


J-η-naturality : {R A B : Ω} 
--------------
                 (f : (A  B))  (ηJ {R})  f  (J-functor f)  ηJ

J-η-naturality f = reflexivity


J-μ-naturality : {R A B : Ω} 
--------------
   (f : (A  B)) 
   (μJ {R} {B})  (J-functor (J-functor f))  (J-functor f)  (μJ {R})

J-μ-naturality f = reflexivity


J-assoc : {R A : Ω} 
-------
          (μJ {R} {A})  (J-functor μJ)  μJ  μJ

J-assoc = reflexivity


J-unit₀ : {R A : Ω} 
--------
           μJ  (J-functor ηJ)  id {J {R} A}

J-unit₀ = reflexivity


J-unit₁ : {R A : Ω} 
--------
           μJ  ηJ  id {J {R} A}

J-unit₁ = reflexivity


-- Digression. Verification that J-K is a monad morphism:


J-K-morphism₀ : {R A : Ω} 
-------------
                (J-K {R} {A})  ηJ  ηK

J-K-morphism₀ = reflexivity


J-K-morphism₁ : {R A : Ω} 
-------------
                (J-K {R} {A})  μJ  μK  J-K  (J-functor J-K)

J-K-morphism₁ = reflexivity


---------------------------
--                       --
-- Extension operators.  --
--                       --
---------------------------


J-extend : {R A B : Ω} 
--------
           (A  J B)  (J A  J B)

J-extend {R} f = μJ  (J-functor {R} f)


observation-J-extend : {R A B : Ω} 
--------------------
               (f : (A  J {R} B))  (ε : J A)  (q : (B  R)) 

               J-extend f ε q  f(ε a  q(f a q))) q

observation-J-extend f ε q = reflexivity


K-extend : {R A B : Ω} 
--------
           (A  K B)  (K A  K B)

K-extend {R} f = μK  (K-functor {R} f)


observation-K-extend : {R A B : Ω} 
--------------------
               (f : (A  K B))  (φ : K A)  (q : (B  R)) 
               K-extend f φ q  φ a  f a q)

observation-K-extend f φ q = reflexivity

-----------------
--             --
-- Strengths.  --
--             --
-----------------


-- Any lambda-defined monad in a cartesian closed category is
-- enriched over the category, and hence is strong. This is why the
-- following two strengths have the same definition, although,
-- concretely, they are given by different lambda definitions
-- (observation-J-strength and observation-K-strength):


J-strength : {R A₀ A₁ : Ω} 
----------
             A₀  J A₁  J(A₀  A₁)

J-strength {R} (∧-intro a₀ ε₁) = J-functor {R}  a₁  ∧-intro a₀ a₁) ε₁


observation-J-strength :  {R A₀ A₁ : Ω}
----------------------
  (a₀ : A₀)  (ε₁ : J {R} A₁) 

  J-strength (∧-intro a₀ ε₁)  λ p  ∧-intro a₀ (ε₁ a₁  p(∧-intro a₀ a₁)))

observation-J-strength a₀ ε₁ = reflexivity


K-strength : {R A₀ A₁ : Ω} 
----------
             A₀  K A₁  K(A₀  A₁)

K-strength {R} (∧-intro a₀ φ₁) = K-functor {R}  a₁  ∧-intro a₀ a₁) φ₁


observation-K-strength :  {R A₀ A₁ : Ω}
----------------------
  (a₀ : A₀)  (φ₁ : K {R} A₁) 

  K-strength (∧-intro a₀ φ₁)  λ p  φ₁ a₁  p(∧-intro a₀ a₁))

observation-K-strength a₀ φ₁ = reflexivity


-- The verification that this is indeed a strength
-- (see http://en.wikipedia.org/wiki/Strong_monad)
-- is not needed.