module Logic where
Ω = Set
data ⊥ : Ω where
⊥-elim : {A : Ω} → ⊥ → A
⊥-elim = λ ()
¬_ : Ω → Ω
¬ A = (A → ⊥)
infix 50 ¬_
data ⊤ : Ω where
* : ⊤
data _∧_ (A₀ A₁ : Ω) : Ω where
∧-intro : A₀ → A₁ → A₀ ∧ A₁
infixr 10 _∧_
∧-elim₀ : {A₀ A₁ : Ω} → A₀ ∧ A₁ → A₀
∧-elim₀ (∧-intro a₀ a₁) = a₀
∧-elim₁ : {A₀ A₁ : Ω} → A₀ ∧ A₁ → A₁
∧-elim₁ (∧-intro a₀ a₁) = a₁
_⇔_ : Ω → Ω → Ω
A ⇔ B = (A → B) ∧ (B → A)
data _∨_ (A₀ A₁ : Ω) : Ω where
∨-intro₀ : A₀ → A₀ ∨ A₁
∨-intro₁ : A₁ → A₀ ∨ A₁
infixr 20 _∨_
∨-elim : {A₀ A₁ B : Ω} → (A₀ → B) → (A₁ → B) → A₀ ∨ A₁ → B
∨-elim f₀ f₁ (∨-intro₀ a₀) = f₀ a₀
∨-elim f₀ f₁ (∨-intro₁ a₁) = f₁ a₁
dependent-∨-elim : {A₀ A₁ : Ω} → {B : A₀ ∨ A₁ → Ω} →
((a₀ : A₀) → B(∨-intro₀ a₀)) → ((a₁ : A₁) → B(∨-intro₁ a₁)) →
(a : A₀ ∨ A₁) → B a
dependent-∨-elim f₀ f₁ (∨-intro₀ a₀) = f₀ a₀
dependent-∨-elim f₀ f₁ (∨-intro₁ a₁) = f₁ a₁
decidable : Ω → Ω
decidable A = A ∨ ¬ A
data ∃ {X : Set} (A : X → Ω) : Ω where
∃-intro : (x₀ : X) → A x₀ → ∃ \(x : X) → A x
∃-witness : {X : Set} {A : X → Ω} → (∃ \(x : X) → A x) → X
∃-witness (∃-intro x a) = x
∃-elim : {X : Set} {A : X → Ω} →
(proof : ∃ \(x : X) → A x) → A (∃-witness proof)
∃-elim (∃-intro x a) = a
inhabited : Set → Ω
inhabited X = ∃ \(x : X) → ⊤