module Logic where

-- Type of propositions denoted by Ω, like in a topos:

Ω = Set

data  : Ω where
-- nothing defined here: there are no constructors of this type.

⊥-elim : {A : Ω}    A
⊥-elim = λ ()


¬_ : Ω  Ω
¬ A = (A  )

infix  50 ¬_


data  : Ω where
 * : 


data _∧_ (A₀ A₁ : Ω) : Ω where
  ∧-intro : A₀  A₁  A₀  A₁

infixr 10 _∧_


∧-elim₀ : {A₀ A₁ : Ω}  A₀  A₁  A₀
∧-elim₀ (∧-intro a₀ a₁) = a₀


∧-elim₁ : {A₀ A₁ : Ω}  A₀  A₁  A₁
∧-elim₁ (∧-intro a₀ a₁) = a₁

_⇔_ : Ω  Ω  Ω
A  B = (A  B)  (B  A)


data _∨_ (A₀ A₁ : Ω) : Ω where
  ∨-intro₀ : A₀  A₀  A₁
  ∨-intro₁ : A₁  A₀  A₁

infixr 20 _∨_


∨-elim : {A₀ A₁ B : Ω}  (A₀  B)  (A₁  B)  A₀  A₁  B
∨-elim f₀ f₁ (∨-intro₀ a₀) = f₀ a₀
∨-elim f₀ f₁ (∨-intro₁ a₁) = f₁ a₁


dependent-∨-elim : {A₀ A₁ : Ω}  {B : A₀  A₁  Ω} 
         ((a₀ : A₀)  B(∨-intro₀ a₀))  ((a₁ : A₁)  B(∨-intro₁ a₁)) 
         (a : A₀  A₁)  B a
dependent-∨-elim f₀ f₁ (∨-intro₀ a₀) = f₀ a₀
dependent-∨-elim f₀ f₁ (∨-intro₁ a₁) = f₁ a₁


decidable : Ω  Ω
decidable A = A  ¬ A


data  {X : Set} (A : X  Ω) : Ω where
     ∃-intro : (x₀ : X)  A x₀   \(x : X)  A x


∃-witness : {X : Set} {A : X  Ω}  ( \(x : X)  A x)  X
∃-witness (∃-intro x a) = x


∃-elim : {X : Set} {A : X  Ω} 

  (proof :  \(x : X)  A x)  A (∃-witness proof)

∃-elim (∃-intro x a) = a


inhabited : Set  Ω
inhabited X =  \(x : X)