module JK-LogicalFacts where

open import JK-Monads
open import Logic
open import LogicalFacts
open import Two
open import Equality

-- Classical existential quantifier:

K∃ : {R : Ω}  {X : Set}  (A : X  Ω)  Ω
K∃ {R} {X} A = K {R} ( {X} A)


-- Another one (which is not fully investigated here):

J∃ : {R : Ω}  {X : Set}  (A : X  Ω)  Ω
J∃ {R} {X} A = J {R} ( {X} A)


-- K∃ is really the classical existential quantifier:


K-exists-implies-not-forall-not : {R : Ω}  {X : Set}  {A : X  Ω} 

 (K∃ \(x : X)  A x)    (∀(x : X)  A x  R)  R

K-exists-implies-not-forall-not = contra-positive forall-not-implies-not-exists


not-forall-not-implies-K-exists : {R : Ω}  {X : Set}  {A : X  Ω} 

 ((∀(x : X)  A x  R)  R)    K∃ \(x : X)  A x

not-forall-not-implies-K-exists = contra-positive not-exists-implies-forall-not

 where NB-special-case : {R : Ω}  {X : Set}  {A : X  Ω} 

        ((∀(x : X)  K(A x))  R)    K∃ \(x : X)  A x  R

       NB-special-case = not-forall-not-implies-K-exists


K-∃-shift : {R : Ω} {X : Set} {A : X  Ω} 

  ( \(x : X)  K(A x))  K∃ \(x : X)  A x

K-∃-shift {R} (∃-intro x φ) = K-functor {R} (∃-intro x) φ


J-Excluded-Middle : {R A : Ω} 

                     J {R } (A  (A  R))

J-Excluded-Middle = λ p  ∨-intro₁ a  p (∨-intro₀ a))


K-Excluded-Middle : {R A : Ω} 

                    K {R} (A  (A  R))

K-Excluded-Middle = J-K(J-Excluded-Middle)


J-∨-elim : {R A₀ A₁ B : Ω}  (A₀  J B)  (A₁  J B)  J(A₀  A₁)  J B

J-∨-elim {R} case₀ case₁ = J-extend {R} (∨-elim case₀ case₁)


K-∨-elim : {R A₀ A₁ B : Ω}  (A₀  K B)  (A₁  K B)  K(A₀  A₁)  K B

K-∨-elim {R} case₀ case₁ = K-extend {R} (∨-elim case₀ case₁)

-- call/cc is Peirce's Law:

PeircesLaw : {R A : Ω}  J(K A)  K A
PeircesLaw {R} = μK {R}  J-K


not-1-must-be-0 : {R : Ω} 

 ∀(b : )  K(b    R)  K(b  )

not-1-must-be-0 b = contra-positive (two-equality-cases b)