Ayberk Tosun, 11 September 2023
\begin{code}
{-# OPTIONS --safe --without-K --lossy-unification #-}
open import MLTT.Spartan hiding (𝟚)
open import UF.PropTrunc
open import UF.FunExt
open import UF.Size
module Locales.StoneImpliesSpectral (pt : propositional-truncations-exist)
(fe : Fun-Ext)
(sr : Set-Replacement pt) where
\end{code}
Importation of foundational UF stuff.
\begin{code}
open import Slice.Family
open import UF.SubtypeClassifier
open import UF.Logic
open AllCombinators pt fe
open PropositionalTruncation pt
\end{code}
Importations of other locale theory modules.
\begin{code}
open import Locales.AdjointFunctorTheoremForFrames
open import Locales.Clopen pt fe sr
open import Locales.Compactness.Definition pt fe
open import Locales.Complements pt fe
open import Locales.ContinuousMap.Definition pt fe
open import Locales.Frame pt fe
open import Locales.GaloisConnection pt fe
open import Locales.InitialFrame pt fe
open import Locales.ScottContinuity pt fe sr
open import Locales.SmallBasis pt fe sr
open import Locales.Spectrality.SpectralLocale pt fe
open import Locales.Spectrality.SpectralMap pt fe
open import Locales.Stone pt fe sr
open import Locales.WayBelowRelation.Definition pt fe
open import Locales.WellInside pt fe sr
open import Locales.ZeroDimensionality pt fe sr
open Locale
\end{code}
The well inside relation implies the way below relation.
\begin{code}
⋜₀-implies-≪-in-compact-frames : (X : Locale 𝓤 𝓥 𝓦)
→ is-compact X holds
→ (U V : ⟨ 𝒪 X ⟩)
→ U ⋜₀[ 𝒪 X ] V
→ (U ≪[ 𝒪 X ] V) holds
⋜₀-implies-≪-in-compact-frames {𝓦 = 𝓦} X κ U V (W , c₁ , c₂) S d q =
∥∥-rec ∃-is-prop θ ζ
where
F = 𝒪 X
open PosetNotation (poset-of (𝒪 X))
open PosetReasoning (poset-of (𝒪 X))
T : Fam 𝓦 ⟨ 𝒪 X ⟩
T = ⁅ W ∨[ F ] Sᵢ ∣ Sᵢ ε S ⁆
δ : (𝟏[ F ] ≤ (⋁[ F ] T)) holds
δ =
𝟏[ F ] =⟨ c₂ ⁻¹ ⟩ₚ
V ∨[ F ] W ≤⟨ ∨[ F ]-left-monotone q ⟩
(⋁[ F ] S) ∨[ F ] W =⟨ ∨[ F ]-is-commutative (⋁[ F ] S) W ⟩ₚ
W ∨[ F ] (⋁[ F ] S) =⟨ ∨-is-scott-continuous-eq (𝒪 X) W S d ⟩ₚ
⋁[ F ] ⁅ W ∨[ F ] Sᵢ ∣ Sᵢ ε S ⁆ ■
ε : ((W ∨[ F ] (⋁[ F ] S)) ≤ (⋁[ F ] T)) holds
ε = W ∨[ F ] (⋁[ F ] S) ≤⟨ 𝟏-is-top F (W ∨[ F ] (⋁[ F ] S)) ⟩
𝟏[ F ] ≤⟨ δ ⟩
⋁[ F ] ⁅ W ∨[ F ] Sᵢ ∣ Sᵢ ε S ⁆ ■
up : (Ɐ i , Ɐ j ,
Ǝ k , (T [ i ] ≤ T [ k ]) holds × (T [ j ] ≤ T [ k ]) holds) holds
up i j = ∥∥-rec ∃-is-prop r (pr₂ d i j)
where
r = λ (k , p , q) → ∣ k , ∨[ F ]-right-monotone p , ∨[ F ]-right-monotone q ∣
T-is-directed : (is-directed F ⁅ W ∨[ F ] Sᵢ ∣ Sᵢ ε S ⁆) holds
T-is-directed = pr₁ d , up
ζ : ∥ Σ i ꞉ index S , (𝟏[ F ] ≤ (W ∨[ F ] (S [ i ]))) holds ∥
ζ = κ ⁅ W ∨[ F ] Sᵢ ∣ Sᵢ ε S ⁆ T-is-directed δ
θ : Σ i ꞉ index S , (𝟏[ F ] ≤ (W ∨[ F ] S [ i ])) holds
→ ∃ i ꞉ index S , (U ≤ S [ i ]) holds
θ (i , p) = ∣ i , well-inside-implies-below F U (S [ i ]) ∣ W , c₁ , ι ∣ ∣
where
η = 𝟏[ F ] ≤⟨ p ⟩
W ∨[ F ] (S [ i ]) =⟨ ∨[ F ]-is-commutative W (S [ i ]) ⟩ₚ
(S [ i ]) ∨[ F ] W ■
ι = only-𝟏-is-above-𝟏 F ((S [ i ]) ∨[ F ] W) η
\end{code}
\begin{code}
⋜-implies-≪-in-compact-frames : (X : Locale 𝓤 𝓥 𝓦)
→ is-compact X holds
→ (U V : ⟨ 𝒪 X ⟩)
→ (U ⋜[ 𝒪 X ] V ⇒ U ≪[ 𝒪 X ] V) holds
⋜-implies-≪-in-compact-frames X κ U V =
∥∥-rec (holds-is-prop (U ≪[ 𝒪 X ] V)) (⋜₀-implies-≪-in-compact-frames X κ U V)
\end{code}
Clopens are compact in compact locales.
\begin{code}
clopens-are-compact-in-compact-locales : (X : Locale 𝓤 𝓥 𝓦)
→ is-compact X holds
→ (U : ⟨ 𝒪 X ⟩)
→ (is-clopen (𝒪 X) U
⇒ is-compact-open X U) holds
clopens-are-compact-in-compact-locales X κ U =
⋜₀-implies-≪-in-compact-frames X κ U U
\end{code}
Clopens are basic in compact locales.
\begin{code}
clopens-are-basic : (X : Locale 𝓤 𝓥 𝓦) (st : stoneᴰ X)
→ (𝒷 : directed-basisᴰ (𝒪 X))
→ (K : ⟨ 𝒪 X ⟩)
→ (is-clopen (𝒪 X) K ⇒ is-basic X K 𝒷) holds
clopens-are-basic X (κ , _) 𝒷 K 𝕔 =
compact-opens-are-basic X 𝒷 K (clopens-are-compact-in-compact-locales X κ K 𝕔)
\end{code}
\begin{code}
stoneᴰ-implies-spectralᴰ : (X : Locale 𝓤 𝓥 𝓦) → stoneᴰ X → spectralᴰ X
stoneᴰ-implies-spectralᴰ {_} {_} {𝓦} X (κₓ , zdₓ) = ℬ , β , κ , μ
where
open Joins (λ x y → x ≤[ poset-of (𝒪 X) ] y)
ℬ : Fam 𝓦 ⟨ 𝒪 X ⟩
ℬ = basis-zd (𝒪 X) zdₓ
φ : consists-of-clopens (𝒪 X) ℬ holds
φ = basis-zd-consists-of-clopens (𝒪 X) zdₓ
β : directed-basis-forᴰ (𝒪 X) ℬ
β U = cover-index-zd (𝒪 X) zdₓ U , † , d
where
𝒥 : Fam 𝓦 (index ℬ)
𝒥 = cover-index-zd (𝒪 X) zdₓ U
† : (U is-lub-of ⁅ ℬ [ j ] ∣ j ε 𝒥 ⁆) holds
† = basis-zd-covers-do-cover (𝒪 X) zdₓ U
d : is-directed (𝒪 X) ⁅ ℬ [ j ] ∣ j ε 𝒥 ⁆ holds
d = basis-zd-covers-are-directed (𝒪 X) zdₓ U
X-is-compact : is-compact X holds
X-is-compact =
clopens-are-compact-in-compact-locales X κₓ 𝟏[ 𝒪 X ] (𝟏-is-clopen (𝒪 X))
κ : consists-of-compact-opens X ℬ holds
κ i = clopens-are-compact-in-compact-locales X κₓ (ℬ [ i ]) 𝕔
where
𝕔 : is-clopen (𝒪 X) (ℬ [ i ]) holds
𝕔 = basis-zd-consists-of-clopens (𝒪 X) zdₓ i
μ₀ : contains-top (𝒪 X) ℬ holds
μ₀ = ∥∥-rec
(holds-is-prop (contains-top (𝒪 X) ℬ))
(λ { (j , p) → ∣ j , transport (λ - → is-top (𝒪 X) - holds) (p ⁻¹) (𝟏-is-top (𝒪 X)) ∣})
(clopens-are-basic X (κₓ , zdₓ) (ℬ , β) 𝟏[ 𝒪 X ] (𝟏-is-clopen (𝒪 X)))
open Meets (λ x y → x ≤[ poset-of (𝒪 X) ] y)
μ₂ : closed-under-binary-meets (𝒪 X) ℬ holds
μ₂ i j = ∥∥-rec ∃-is-prop † ξ
where
ν : is-clopen (𝒪 X) (ℬ [ i ] ∧[ 𝒪 X ] ℬ [ j ]) holds
ν = clopens-are-closed-under-∧ (𝒪 X) (ℬ [ i ]) (ℬ [ j ]) (φ i) (φ j)
ξ : is-basic X (ℬ [ i ] ∧[ 𝒪 X ] ℬ [ j ]) (ℬ , β) holds
ξ = clopens-are-basic X (κₓ , zdₓ) (ℬ , β) (ℬ [ i ] ∧[ 𝒪 X ] ℬ [ j ]) ν
† : Σ k ꞉ index ℬ , ℬ [ k ] = ℬ [ i ] ∧[ 𝒪 X ] ℬ [ j ]
→ (Ǝ k ꞉ index ℬ , ((ℬ [ k ]) is-glb-of (ℬ [ i ] , ℬ [ j ])) holds) holds
† (k , p) = ∣ k , ∧[ 𝒪 X ]-is-glb⋆ p ∣
μ : closed-under-finite-meets (𝒪 X) ℬ holds
μ = μ₀ , μ₂
\end{code}
`stoneᴰ X` implies that `X` is spectral.
\begin{code}
stone-locales-are-spectral : (X : Locale 𝓤 𝓥 𝓦) → stoneᴰ X → is-spectral X holds
stone-locales-are-spectral X σ@(κ , ζ) = spectralᴰ-gives-spectrality X σᴰ
where
σᴰ : spectralᴰ X
σᴰ = stoneᴰ-implies-spectralᴰ X σ
\end{code}
Added on 2024-08-11.
\begin{code}
stoneᴰ-locales-are-compact : (X : Locale 𝓤 𝓥 𝓦)
→ stoneᴰ X → is-compact X holds
stoneᴰ-locales-are-compact X (κ , _) = κ
\end{code}
\begin{code}
module continuous-maps-of-stone-locales
(X : Locale 𝓤 𝓥 𝓥)
(Y : Locale 𝓤 𝓥 𝓥)
(𝕤₁ : stoneᴰ X)
(𝕤₂ : stoneᴰ Y)
where
open ContinuousMaps
κ₁ : is-compact X holds
κ₁ = stoneᴰ-locales-are-compact X 𝕤₁
κ₂ : is-compact Y holds
κ₂ = stoneᴰ-locales-are-compact Y 𝕤₂
zd₂ : zero-dimensionalᴰ (𝒪 Y)
zd₂ = pr₂ 𝕤₂
continuous-maps-between-stone-locales-are-spectral
: (f : X ─c→ Y)
→ is-spectral-map Y X f holds
continuous-maps-between-stone-locales-are-spectral 𝒻 K κ =
clopens-are-compact-in-compact-locales X κ₁ (𝒻 ⋆∙ K) ϑ
where
open ContinuousMapNotation X Y
ψ : is-clopen (𝒪 Y) K holds
ψ = compacts-are-clopen-in-zd-locales Y ∣ zd₂ ∣ K κ
K' : ⟨ 𝒪 Y ⟩
K' = pr₁ ψ
χ : is-boolean-complement-of (𝒪 Y) K' K holds
χ = pr₂ ψ
χ' : is-boolean-complement-of (𝒪 Y) K K' holds
χ' = complementation-is-symmetric (𝒪 Y) K' K χ
† : is-boolean-complement-of (𝒪 X) (𝒻 ⋆∙ K') (𝒻 ⋆∙ K) holds
† = frame-homomorphisms-preserve-complements (𝒪 Y) (𝒪 X) (_⋆ 𝒻) χ'
ϑ : is-clopen (𝒪 X) (𝒻 ⋆∙ K) holds
ϑ = 𝒻 ⋆∙ K' , †
\end{code}