Ayberk Tosun, 13 September 2023
The module contains the definition of a spectral locale.
This used to live in the `CompactRegular` module which is now deprecated and
will be broken down into smaller modules.
\begin{code}[hide]
{-# OPTIONS --safe --without-K --lossy-unification #-}
open import UF.FunExt
open import UF.PropTrunc
module Locales.Spectrality.SpectralMap (pt : propositional-truncations-exist)
(fe : Fun-Ext) where
open import Locales.Compactness.Definition pt fe
open import Locales.ContinuousMap.Definition pt fe
open import Locales.ContinuousMap.FrameHomomorphism-Definition pt fe
open import Locales.ContinuousMap.FrameHomomorphism-Properties pt fe
open import Locales.Frame pt fe
open import MLTT.Spartan
open import UF.Logic
open import UF.SubtypeClassifier
open AllCombinators pt fe
open ContinuousMaps
open FrameHomomorphismProperties
open FrameHomomorphisms
open Locale
\end{code}
Definition of the notion of a spectral map.
\begin{code}
is-spectral-map : (Y : Locale š¤ š„ š„) (X : Locale š¤' š„ š„)
ā (X ācā Y) ā Ī© (š¤ ā š¤' ā š„ āŗ)
is-spectral-map Y X (f , _) =
Ɐ K ź ⨠šŖ Y ā© , is-compact-open Y K ā is-compact-open X (f K)
\end{code}
Added on 2024-03-04.
\begin{code}
Spectral-Map : (X : Locale š¤ š„ š„) (Y : Locale š¤' š„ š„) ā (š¤ ā š¤' ā š„ āŗ) Ģ
Spectral-Map X Y = Ī£ f ź X ācā Y , is-spectral-map Y X f holds
continuous-map-of : (X : Locale š¤ š„ š„) (Y : Locale š¤' š„ š„)
ā Spectral-Map X Y ā X ācā Y
continuous-map-of X Y (f , _) = f
spectrality-of-spectral-map : (X : Locale š¤ š„ š„) (Y : Locale š¤' š„ š„)
ā (fā : Spectral-Map X Y)
ā is-spectral-map Y X (continuous-map-of X Y fā) holds
spectrality-of-spectral-map X Y (_ , š¤) = š¤
syntax Spectral-Map X Y = X āsā Y
\end{code}