Ayberk Tosun, 11 September 2023
\begin{code}
{-# OPTIONS --safe --without-K --lossy-unification #-}
open import MLTT.Spartan hiding (𝟚)
open import UF.PropTrunc
open import UF.FunExt
open import UF.Size
module Locales.ZeroDimensionality (pt : propositional-truncations-exist)
(fe : Fun-Ext)
(sr : Set-Replacement pt) where
\end{code}
Importation of foundational UF stuff.
\begin{code}
open import Slice.Family
open import UF.SubtypeClassifier
open import UF.Logic
open AllCombinators pt fe
open PropositionalTruncation pt
\end{code}
Importations of other locale theory modules.
\begin{code}
open import Locales.Frame pt fe hiding (is-directed-basis)
open import Locales.WayBelowRelation.Definition pt fe
open import Locales.Compactness.Definition pt fe
open import Locales.Complements pt fe
open import Locales.GaloisConnection pt fe
open import Locales.InitialFrame pt fe
open import Locales.Clopen pt fe sr
open import Locales.SmallBasis pt fe sr
open import Locales.Regular pt fe sr
open import Locales.WellInside pt fe sr
open Locale
\end{code}
The following is the definition of the notion of a _zero-dimensionality
structure_.
\begin{code}
zero-dimensionalᴰ : Frame 𝓤 𝓥 𝓦 → (𝓤 ⊔ 𝓥 ⊔ 𝓦 ⁺) ̇
zero-dimensionalᴰ {𝓦 = 𝓦} F =
Σ ℬ ꞉ Fam 𝓦 ⟨ F ⟩ , directed-basis-forᴰ F ℬ
× consists-of-clopens F ℬ holds
\end{code}
We define some projections for the components of a ZD structure.
\begin{code}
basis-zd : (L : Frame 𝓤 𝓥 𝓦) → zero-dimensionalᴰ L → Fam 𝓦 ⟨ L ⟩
basis-zd L = pr₁
cover-index-zd : (L : Frame 𝓤 𝓥 𝓦) (zd : zero-dimensionalᴰ L)
→ ⟨ L ⟩ → Fam 𝓦 (index (basis-zd L zd))
cover-index-zd L zd U = pr₁ (pr₁ (pr₂ zd) U)
basis-zd-covers-are-directed : (L : Frame 𝓤 𝓥 𝓦) (zd : zero-dimensionalᴰ L)
→ (U : ⟨ L ⟩)
→ let
ℬ = basis-zd L zd
𝒥 = cover-index-zd L zd U
in
is-directed L ⁅ ℬ [ j ] ∣ j ε 𝒥 ⁆ holds
basis-zd-covers-are-directed L zd U = pr₂ (pr₂ (pr₁ (pr₂ zd) U))
basis-zd-covers-do-cover : (L : Frame 𝓤 𝓥 𝓦) (zd : zero-dimensionalᴰ L)
→ (U : ⟨ L ⟩)
→ let
ℬ = basis-zd L zd
𝒥 = cover-index-zd L zd U
open Joins (λ x y → x ≤[ poset-of L ] y)
in
(U is-lub-of ⁅ ℬ [ j ] ∣ j ε 𝒥 ⁆) holds
basis-zd-covers-do-cover L zd U = pr₁ (pr₂ (pr₁ (pr₂ zd) U))
basis-of-zero-dimensionalᴰ-frame : (L : Frame 𝓤 𝓥 𝓦)
→ zero-dimensionalᴰ L
→ Σ ℬ ꞉ Fam 𝓦 ⟨ L ⟩ , directed-basis-forᴰ L ℬ
basis-of-zero-dimensionalᴰ-frame L (ℬ , β , _) = ℬ , β
basis-zd-consists-of-clopens : (L : Frame 𝓤 𝓥 𝓦) (zd : zero-dimensionalᴰ L)
→ let
ℬ = basis-zd L zd
in
consists-of-clopens L ℬ holds
basis-zd-consists-of-clopens L zd = pr₂ (pr₂ zd)
\end{code}
The notion of a zero-dimensional frame can then be defined simply as the
truncation of this structure.
\begin{code}
is-zero-dimensional : Frame 𝓤 𝓥 𝓦 → Ω (𝓤 ⊔ 𝓥 ⊔ 𝓦 ⁺)
is-zero-dimensional F = ∥ zero-dimensionalᴰ F ∥Ω
\end{code}
\begin{code}
zero-dimensionalᴰ-implies-has-basis : (L : Frame 𝓤 𝓥 𝓦)
→ zero-dimensionalᴰ L → basisᴰ L
zero-dimensionalᴰ-implies-has-basis {𝓤} {𝓥} {𝓦} L zd = ℬ , †
where
open Joins (λ x y → x ≤[ poset-of L ] y)
ℬ : Fam 𝓦 ⟨ L ⟩
ℬ = basis-zd L zd
† : basis-forᴰ L ℬ
† U = 𝒥 , φ
where
𝒥 = cover-index-zd L zd U
φ : (U is-lub-of ⁅ ℬ [ j ] ∣ j ε 𝒥 ⁆) holds
φ = basis-zd-covers-do-cover L zd U
zero-dimensionalᴰ-implies-has-directed-basis : (L : Frame 𝓤 𝓥 𝓦)
→ zero-dimensionalᴰ L → directed-basisᴰ L
zero-dimensionalᴰ-implies-has-directed-basis {𝓤} {𝓥} {𝓦} L zd = ℬ , †
where
open Joins (λ x y → x ≤[ poset-of L ] y)
ℬ : Fam 𝓦 ⟨ L ⟩
ℬ = basis-zd L zd
† : directed-basis-forᴰ L ℬ
† U = 𝒥 , φ , d
where
𝒥 = cover-index-zd L zd U
φ : (U is-lub-of ⁅ ℬ [ j ] ∣ j ε 𝒥 ⁆) holds
φ = basis-zd-covers-do-cover L zd U
d : is-directed L ⁅ ℬ [ j ] ∣ j ε 𝒥 ⁆ holds
d = basis-zd-covers-are-directed L zd U
\end{code}
\begin{code}
zero-dimensional-locales-are-regular : (F : Frame 𝓤 𝓥 𝓦)
→ is-zero-dimensional F holds
→ is-regular F holds
zero-dimensional-locales-are-regular {𝓦 = 𝓦} F =
∥∥-rec (holds-is-prop (is-regular F)) γ
where
open Joins (λ x y → x ≤[ poset-of F ] y)
γ : zero-dimensionalᴰ F → is-regular F holds
γ zd@(ℬ , β , ξ) = ∣ ℬ , δ ∣
where
δ : Π U ꞉ ⟨ F ⟩ ,
Σ J ꞉ Fam 𝓦 (index ℬ) ,
(U is-lub-of (fmap-syntax (_[_] ℬ) J)) holds
× (Π i ꞉ index J , (ℬ [ J [ i ] ] ⋜[ F ] U) holds)
δ U = 𝒥 , c , ε
where
𝒥 = cover-index-zd F zd U
c : (U is-lub-of ⁅ ℬ [ j ] ∣ j ε 𝒥 ⁆) holds
c = basis-zd-covers-do-cover F zd U
ε : Π i ꞉ index 𝒥 , (ℬ [ 𝒥 [ i ] ] ⋜[ F ] U) holds
ε i = ↑↑-is-upwards-closed F ∣ ξ (𝒥 [ i ]) ∣ (pr₁ c i)
where
η : ((ℬ [ 𝒥 [ i ] ]) ≤[ poset-of F ] (ℬ [ 𝒥 [ i ] ])) holds
η = ≤-is-reflexive (poset-of F) (ℬ [ 𝒥 [ i ] ])
\end{code}
\begin{code}
compacts-are-clopen-in-zd-locales : (X : Locale 𝓤 𝓥 𝓦)
→ is-zero-dimensional (𝒪 X) holds
→ (U : ⟨ 𝒪 X ⟩)
→ (is-compact-open X U ⇒ is-clopen (𝒪 X) U) holds
compacts-are-clopen-in-zd-locales X 𝕫 =
compacts-are-clopen-in-regular-frames X ρ
where
ρ : is-regular (𝒪 X) holds
ρ = zero-dimensional-locales-are-regular (𝒪 X) 𝕫
\end{code}