Ayberk Tosun, 11 September 2023
\begin{code}[hide]
{-# OPTIONS --safe --without-K --lossy-unification #-}
open import UF.FunExt
open import UF.PropTrunc
module Locales.Complements (pt : propositional-truncations-exist)
(fe : Fun-Ext) where
open import Locales.ContinuousMap.FrameHomomorphism-Definition pt fe
open import Locales.ContinuousMap.FrameHomomorphism-Properties pt fe
open import Locales.Frame pt fe
open import MLTT.Spartan hiding (𝟚)
open import UF.Logic
open import UF.SubtypeClassifier
open AllCombinators pt fe
open FrameHomomorphismProperties
open FrameHomomorphisms
open Locale
open PropositionalTruncation pt
\end{code}
An open `x` in a frame `L` is *clopen* iff it has complement `x′`.
\begin{code}
is-boolean-complement-of : (L : Frame 𝓤 𝓥 𝓦) → ⟨ L ⟩ → ⟨ L ⟩ → Ω 𝓤
is-boolean-complement-of F x′ x =
(x ∧[ F ] x′ =[ iss ]= 𝟎[ F ]) ∧ (x ∨[ F ] x′ =[ iss ]= 𝟏[ F ])
where
iss = carrier-of-[ poset-of F ]-is-set
\end{code}
\begin{code}
complementation-is-symmetric : (F : Frame 𝓤 𝓥 𝓦) (x y : ⟨ F ⟩)
→ (is-boolean-complement-of F x y
⇒ is-boolean-complement-of F y x) holds
complementation-is-symmetric F x y (φ , ψ) = † , ‡
where
† : x ∧[ F ] y = 𝟎[ F ]
† = x ∧[ F ] y =⟨ ∧[ F ]-is-commutative x y ⟩ y ∧[ F ] x =⟨ φ ⟩ 𝟎[ F ] ∎
‡ : x ∨[ F ] y = 𝟏[ F ]
‡ = x ∨[ F ] y =⟨ ∨[ F ]-is-commutative x y ⟩ y ∨[ F ] x =⟨ ψ ⟩ 𝟏[ F ] ∎
\end{code}
\begin{code}
complement-of-meet : (L : Frame 𝓤 𝓥 𝓦)
→ {x y x′ y′ : ⟨ L ⟩}
→ is-boolean-complement-of L x x′ holds
→ is-boolean-complement-of L y y′ holds
→ is-boolean-complement-of L (x′ ∨[ L ] y′) (x ∧[ L ] y) holds
complement-of-meet L {x} {y} {x′} {y′} φ ψ = β , γ
where
open PosetReasoning (poset-of L)
F = L
_⊓_ = λ x y → x ∧[ L ] y
φ₀ : x ⊓ x′ = 𝟎[ F ]
φ₀ = x ⊓ x′ =⟨ ∧[ F ]-is-commutative x x′ ⟩ x′ ⊓ x =⟨ pr₁ φ ⟩ 𝟎[ F ] ∎
ψ₀ : y ⊓ y′ = 𝟎[ F ]
ψ₀ = y ⊓ y′ =⟨ ∧[ F ]-is-commutative y y′ ⟩ y′ ⊓ y =⟨ pr₁ ψ ⟩ 𝟎[ F ] ∎
φ₁ : x ∨[ F ] x′ = 𝟏[ F ]
φ₁ = x ∨[ F ] x′ =⟨ ∨[ F ]-is-commutative x x′ ⟩
x′ ∨[ F ] x =⟨ pr₂ φ ⟩
𝟏[ F ] ∎
β : (x ∧[ F ] y) ∧[ F ] (x′ ∨[ F ] y′) = 𝟎[ F ]
β = (x ⊓ y) ⊓ (x′ ∨[ F ] y′) =⟨ Ⅰ ⟩
((x ⊓ y) ⊓ x′) ∨[ F ] ((x ⊓ y) ⊓ y′) =⟨ Ⅱ ⟩
((y ⊓ x) ⊓ x′) ∨[ F ] ((x ⊓ y) ⊓ y′) =⟨ Ⅲ ⟩
(y ⊓ (x ⊓ x′)) ∨[ F ] ((x ⊓ y) ⊓ y′) =⟨ Ⅳ ⟩
(y ⊓ 𝟎[ F ]) ∨[ F ] ((x ⊓ y) ⊓ y′) =⟨ Ⅴ ⟩
𝟎[ F ] ∨[ F ] ((x ⊓ y) ⊓ y′) =⟨ Ⅵ ⟩
(x ⊓ y) ⊓ y′ =⟨ Ⅶ ⟩
x ⊓ (y ⊓ y′) =⟨ Ⅷ ⟩
x ⊓ 𝟎[ F ] =⟨ Ⅸ ⟩
𝟎[ F ] ∎
where
Ⅰ = binary-distributivity F (x ⊓ y) x′ y′
Ⅱ = ap (λ - → (- ⊓ x′) ∨[ F ] ((x ⊓ y) ⊓ y′)) (∧[ F ]-is-commutative x y)
Ⅲ = ap (λ - → - ∨[ F ] ((x ⊓ y) ⊓ y′)) (∧[ F ]-is-associative y x x′ ⁻¹)
Ⅳ = ap (λ - → (y ⊓ -) ∨[ F ] ((x ⊓ y) ⊓ y′)) φ₀
Ⅴ = ap (λ - → - ∨[ F ] ((x ⊓ y) ⊓ y′)) (𝟎-right-annihilator-for-∧ F y)
Ⅵ = 𝟎-right-unit-of-∨ F ((x ⊓ y) ⊓ y′)
Ⅶ = ∧[ F ]-is-associative x y y′ ⁻¹
Ⅷ = ap (λ - → x ⊓ -) ψ₀
Ⅸ = 𝟎-right-annihilator-for-∧ F x
γ : (x ⊓ y) ∨[ F ] (x′ ∨[ F ] y′) = 𝟏[ F ]
γ = (x ⊓ y) ∨[ F ] (x′ ∨[ F ] y′) =⟨ Ⅰ ⟩
(x′ ∨[ F ] y′) ∨[ F ] (x ⊓ y) =⟨ Ⅱ ⟩
((x′ ∨[ F ] y′) ∨[ F ] x) ∧[ F ] ((x′ ∨[ F ] y′) ∨[ F ] y) =⟨ Ⅲ ⟩
((y′ ∨[ F ] x′) ∨[ F ] x) ∧[ F ] ((x′ ∨[ F ] y′) ∨[ F ] y) =⟨ Ⅳ ⟩
(y′ ∨[ F ] (x′ ∨[ F ] x)) ∧[ F ] ((x′ ∨[ F ] y′) ∨[ F ] y) =⟨ Ⅴ ⟩
(y′ ∨[ F ] 𝟏[ F ]) ∧[ F ] ((x′ ∨[ F ] y′) ∨[ F ] y) =⟨ Ⅵ ⟩
𝟏[ F ] ∧[ F ] ((x′ ∨[ F ] y′) ∨[ F ] y) =⟨ Ⅶ ⟩
(x′ ∨[ F ] y′) ∨[ F ] y =⟨ Ⅷ ⟩
x′ ∨[ F ] (y′ ∨[ F ] y) =⟨ Ⅸ ⟩
x′ ∨[ F ] 𝟏[ F ] =⟨ Ⅹ ⟩
𝟏[ F ] ∎
where
† = ∨[ F ]-is-commutative x′ y′
‡ = 𝟏-right-annihilator-for-∨ F y′
Ⅰ = ∨[ F ]-is-commutative (x ⊓ y) (x′ ∨[ F ] y′)
Ⅱ = binary-distributivity-op F (x′ ∨[ F ] y′) x y
Ⅲ = ap (λ - → (- ∨[ F ] x) ∧[ F ] ((_ ∨[ F ] _) ∨[ F ] y)) †
Ⅳ = ap (λ - → - ∧[ F ] ((x′ ∨[ F ] y′) ∨[ F ] y)) (∨[ F ]-assoc y′ x′ x)
Ⅴ = ap (λ - → (y′ ∨[ F ] -) ∧[ F ] ((x′ ∨[ F ] y′) ∨[ F ] y)) (pr₂ φ)
Ⅵ = ap (λ - → - ∧[ F ] ((x′ ∨[ F ] y′) ∨[ F ] y)) ‡
Ⅶ = 𝟏-left-unit-of-∧ F ((x′ ∨[ F ] y′) ∨[ F ] y)
Ⅷ = ∨[ F ]-assoc x′ y′ y
Ⅸ = ap (λ - → x′ ∨[ F ] -) (pr₂ ψ)
Ⅹ = 𝟏-right-annihilator-for-∨ F x′
\end{code}
\begin{code}
frame-homomorphisms-preserve-complements : (F G : Frame 𝓤 𝓥 𝓦)
→ (h : F ─f→ G)
→ {x x′ : ⟨ F ⟩}
→ is-boolean-complement-of F x′ x holds
→ is-boolean-complement-of G (h .pr₁ x) (h .pr₁ x′) holds
frame-homomorphisms-preserve-complements F G 𝒽@(h , _ , μ) {x} {x′} (φ , ψ) = † , ‡
where
† : (h x′) ∧[ G ] (h x) = 𝟎[ G ]
† = h x′ ∧[ G ] h x =⟨ Ⅰ ⟩
h (x′ ∧[ F ] x) =⟨ Ⅱ ⟩
h 𝟎[ F ] =⟨ Ⅲ ⟩
𝟎[ G ] ∎
where
Ⅰ = frame-homomorphisms-preserve-meets F G 𝒽 x′ x ⁻¹
Ⅱ = ap h (x′ ∧[ F ] x =⟨ ∧[ F ]-is-commutative x′ x ⟩
x ∧[ F ] x′ =⟨ φ ⟩
𝟎[ F ] ∎)
Ⅲ = frame-homomorphisms-preserve-bottom F G 𝒽
‡ : h x′ ∨[ G ] h x = 𝟏[ G ]
‡ = h x′ ∨[ G ] h x =⟨ Ⅰ ⟩
h (x′ ∨[ F ] x) =⟨ Ⅱ ⟩
h 𝟏[ F ] =⟨ Ⅲ ⟩
𝟏[ G ] ∎
where
Ⅰ = frame-homomorphisms-preserve-binary-joins F G 𝒽 x′ x ⁻¹
Ⅱ = ap h (x′ ∨[ F ] x =⟨ ∨[ F ]-is-commutative x′ x ⟩
x ∨[ F ] x′ =⟨ ψ ⟩
𝟏[ F ] ∎)
Ⅲ = frame-homomorphisms-preserve-top F G 𝒽
\end{code}