Martin Escardo 2018. Classically, the ordinals Ο +β πβ and βββ are equal. Constructively, we have (Ο +β πβ) β΄ βββ, but the inequality in the other direction is equivalent to LPO. \begin{code} {-# OPTIONS --safe --without-K --lossy-unification #-} open import UF.Univalence open import UF.FunExt open import UF.UA-FunExt module Ordinals.ConvergentSequence (ua : Univalence) where private fe : FunExt fe = Univalence-gives-FunExt ua fe' : Fun-Ext fe' {π€} {π₯} = fe π€ π₯ open import MLTT.Spartan open import Notation.CanonicalMap open import Taboos.LPO open import Naturals.Order open import Ordinals.Arithmetic fe open import Ordinals.OrdinalOfOrdinals ua open import Ordinals.Type open import Ordinals.Equivalence open import Ordinals.Underlying open import CoNaturals.Type open import UF.Equiv Ο+π-is-β΄-ββ : (Ο +β πβ) β΄ βββ Ο+π-is-β΄-ββ = ΞΉπ , i , p where i : (x : β¨ Ο +β πβ β©) (y : β¨ βββ β©) β y βΊβ¨ βββ β© ΞΉπ x β Ξ£ x' κ β¨ Ο +β πβ β© , (x' βΊβ¨ Ο +β πβ β© x) Γ (ΞΉπ x' οΌ y) i (inl m) y (n , r , l) = inl n , β-gives-< n m l , (r β»ΒΉ) i (inr *) y (n , r , l) = inl n , * , (r β»ΒΉ) p : (x y : β¨ Ο +β πβ β©) β x βΊβ¨ Ο +β πβ β© y β ΞΉπ x βΊβ¨ βββ β© ΞΉπ y p (inl n) (inl m) l = β-to-ββ-order-preserving n m l p (inl n) (inr *) * = β-βΊ-largest n p (inr *) (inl m) l = π-elim l p (inr *) (inr *) l = π-elim l ββ-β΄-Ο+π-gives-LPO : βββ β΄ (Ο +β πβ) β LPO ββ-β΄-Ο+π-gives-LPO l = Ξ³ where b : (Ο +β πβ) ββ βββ b = bisimilarity-gives-ordinal-equiv (Ο +β πβ) βββ Ο+π-is-β΄-ββ l e : is-equiv ΞΉπ e = prβ (ββ-gives-β (Ο +β πβ) βββ b) Ξ³ : LPO Ξ³ = ΞΉπ-has-section-gives-LPO (equivs-have-sections ΞΉπ e) LPO-gives-ββ-β΄-Ο+π-gives : LPO β βββ β΄ (Ο +β πβ) LPO-gives-ββ-β΄-Ο+π-gives lpo = (Ξ» x β ΞΉπ-inverse x (lpo x)) , (Ξ» x β i x (lpo x)) , (Ξ» x y β p x y (lpo x) (lpo y)) where ΞΉπ-inverse-inl : (u : ββ) (d : is-decidable (Ξ£ n κ β , u οΌ ΞΉ n)) β (m : β) β u οΌ ΞΉ m β ΞΉπ-inverse u d οΌ inl m ΞΉπ-inverse-inl . (ΞΉ n) (inl (n , refl)) m q = ap inl (β-to-ββ-lc q) ΞΉπ-inverse-inl u (inr g) m q = π-elim (g (m , q)) i : (x : ββ) (d : is-decidable (Ξ£ n κ β , x οΌ ΞΉ n)) (y : β + π) β y βΊβ¨ Ο +β πβ β© ΞΉπ-inverse x d β Ξ£ x' κ ββ , (x' βΊβ¨ βββ β© x) Γ (ΞΉπ-inverse x' (lpo x') οΌ y) i .(ΞΉ n) (inl (n , refl)) (inl m) l = ΞΉ m , β-to-ββ-order-preserving m n l , ΞΉπ-inverse-inl (ΞΉ m) (lpo (ΞΉ m)) m refl i .(ΞΉ n) (inl (n , refl)) (inr *) l = π-elim l i x (inr g) (inl n) * = ΞΉ n , transport (underlying-order βββ (ΞΉ n)) ((not-finite-is-β (fe π€β π€β) (curry g)) β»ΒΉ) (β-βΊ-largest n) , ΞΉπ-inverse-inl (ΞΉ n) (lpo (ΞΉ n)) n refl i x (inr g) (inr *) l = π-elim l p : (x y : ββ) (d : is-decidable (Ξ£ n κ β , x οΌ ΞΉ n)) (e : is-decidable (Ξ£ m κ β , y οΌ ΞΉ m)) β x βΊβ¨ βββ β© y β ΞΉπ-inverse x d βΊβ¨ Ο +β πβ β© ΞΉπ-inverse y e p .(ΞΉ n) .(ΞΉ m) (inl (n , refl)) (inl (m , refl)) (k , r , l) = transportβ»ΒΉ (Ξ» - β - <β m) (β-to-ββ-lc r) (β-gives-< k m l) p .(ΞΉ n) y (inl (n , refl)) (inr f) l = β p x y (inr f) e (k , r , l) = π-elim (β-is-not-finite k ((not-finite-is-β (fe π€β π€β) (curry f))β»ΒΉ β r)) ββ-is-successorβ : LPO β βββ ββ (Ο +β πβ) ββ-is-successorβ lpo = bisimilarity-gives-ordinal-equiv βββ (Ο +β πβ) (LPO-gives-ββ-β΄-Ο+π-gives lpo) Ο+π-is-β΄-ββ ββ-is-successorβ : LPO β ββ β (β + π) ββ-is-successorβ lpo = ββ-gives-β βββ (Ο +β πβ) (ββ-is-successorβ lpo) ββ-is-successorβ : LPO β βββ οΌ (Ο +β πβ) ββ-is-successorβ lpo = eqtoidβ (ua π€β) fe' βββ (Ο +β πβ) (ββ-is-successorβ lpo) ββ-is-successorβ : LPO β ββ οΌ (β + π) ββ-is-successorβ lpo = eqtoid (ua π€β) ββ (β + π) (ββ-is-successorβ lpo) \end{code}