Martin Escardo, 29 June 2018 The type Ordinals of ordinals in a universe 𝓤, and the subtype Ordinalsᵀ of ordinals with a top element. \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import Ordinals.Notions open import Ordinals.Underlying open import UF.FunExt open import UF.Sets open import UF.Subsingletons open import UF.Subsingletons-FunExt module Ordinals.Type where \end{code} An ordinal is a type equipped with ordinal structure. Such a type is automatically a set. \begin{code} OrdinalStructure : 𝓤 ̇ → 𝓤 ⁺ ̇ OrdinalStructure {𝓤} X = Σ _<_ ꞉ (X → X → 𝓤 ̇ ) , (is-well-order _<_) Ordinal : ∀ 𝓤 → 𝓤 ⁺ ̇ Ordinal 𝓤 = Σ X ꞉ 𝓤 ̇ , OrdinalStructure X Ord = Ordinal 𝓤₀ \end{code} NB. Perhaps we will eventually need to have two parameters 𝓤 (the universe where the underlying type X lives) and 𝓥 (the universe where _<_ takes values in) for Ordinal. Ordinals are ranged over by α,β,γ. The underlying type of an ordinal (which happens to be necessarily a set): \begin{code} instance underlying-type-of-ordinal : Underlying (Ordinal 𝓤) ⟨_⟩ {{underlying-type-of-ordinal}} (X , _) = X underlying-order {{underlying-type-of-ordinal}} (X , _<_ , o) = _<_ structure : (α : Ordinal 𝓤) → OrdinalStructure ⟨ α ⟩ structure (X , s) = s is-trichotomous : Ordinal 𝓤 → 𝓤 ̇ is-trichotomous α = is-trichotomous-order (underlying-order α) is-well-ordered : (α : Ordinal 𝓤) → is-well-order (underlying-order α) is-well-ordered (X , _<_ , o) = o Prop-valuedness : (α : Ordinal 𝓤) → is-prop-valued (underlying-order α) Prop-valuedness α = prop-valuedness (underlying-order α) (is-well-ordered α) Reflexivity : (α : Ordinal 𝓤) {x : ⟨ α ⟩} → x ≼⟨ α ⟩ x Reflexivity α = ≼-refl (underlying-order α) Transitivity : (α : Ordinal 𝓤) → is-transitive (underlying-order α) Transitivity α = transitivity (underlying-order α) (is-well-ordered α) Well-foundedness : (α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-accessible (underlying-order α) x Well-foundedness α = well-foundedness (underlying-order α) (is-well-ordered α) Transfinite-induction : (α : Ordinal 𝓤) → (P : ⟨ α ⟩ → 𝓦 ̇ ) → ((x : ⟨ α ⟩) → ((y : ⟨ α ⟩) → y ≺⟨ α ⟩ x → P y) → P x) → (x : ⟨ α ⟩) → P x Transfinite-induction α = transfinite-induction (underlying-order α) (Well-foundedness α) Transfinite-recursion : (α : Ordinal 𝓤) {Y : 𝓥 ̇ } → ((x : ⟨ α ⟩) → ((y : ⟨ α ⟩) → y ≺⟨ α ⟩ x → Y) → Y) → ⟨ α ⟩ → Y Transfinite-recursion α = transfinite-recursion (underlying-order α) (Well-foundedness α) \end{code} Added 31 October 2022 by Tom de Jong. We record the (computational) behaviour of transfinite induction for use in other constructions. \begin{code} Transfinite-induction-behaviour : FunExt → (α : Ordinal 𝓤) → (P : ⟨ α ⟩ → 𝓦 ̇ ) → (f : (x : ⟨ α ⟩) → ((y : ⟨ α ⟩) → y ≺⟨ α ⟩ x → P y) → P x) → (x : ⟨ α ⟩) → Transfinite-induction α P f x = f x (λ y l → Transfinite-induction α P f y) Transfinite-induction-behaviour fe α = transfinite-induction-behaviour (underlying-order α) fe (Well-foundedness α) \end{code} End of addition. \begin{code} Transfinite-recursion-behaviour : FunExt → (α : Ordinal 𝓤) → {Y : 𝓥 ̇ } → (f : (x : ⟨ α ⟩) → ((y : ⟨ α ⟩) → y ≺⟨ α ⟩ x → Y) → Y) → (x : ⟨ α ⟩) → Transfinite-recursion α f x = f x (λ y l → Transfinite-recursion α f y) Transfinite-recursion-behaviour fe α = transfinite-recursion-behaviour (underlying-order α) fe (Well-foundedness α) Extensionality : (α : Ordinal 𝓤) → is-extensional (underlying-order α) Extensionality α = extensionality (underlying-order α) (is-well-ordered α) Antisymmetry : (α : Ordinal 𝓤) (x y : ⟨ α ⟩) → x ≼⟨ α ⟩ y → y ≼⟨ α ⟩ x → x = y Antisymmetry = Extensionality underlying-type-is-set : FunExt → (α : Ordinal 𝓤) → is-set ⟨ α ⟩ underlying-type-is-set fe α = extensionally-ordered-types-are-sets (underlying-order α) fe (Prop-valuedness α) (Extensionality α) is-least : (α : Ordinal 𝓤) → ⟨ α ⟩ → 𝓤 ̇ is-least α x = (y : ⟨ α ⟩) → x ≼⟨ α ⟩ y being-least-is-prop : Fun-Ext → (α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-prop (is-least α x) being-least-is-prop fe α x = Π₃-is-prop fe (λ y u _ → Prop-valuedness α u y) at-most-one-least : (α : Ordinal 𝓤) (x y : ⟨ α ⟩) → is-least α x → is-least α y → x = y at-most-one-least α x y l l' = Antisymmetry α x y (l y) (l' x) has-least : Ordinal 𝓤 → 𝓤 ̇ has-least α = Σ ⊥ ꞉ ⟨ α ⟩ , is-least α ⊥ having-least-is-prop : Fun-Ext → (α : Ordinal 𝓤) → is-prop (has-least α) having-least-is-prop fe α (⊥ , l) (⊥' , l') = to-subtype-= (being-least-is-prop fe α) (at-most-one-least α ⊥ ⊥' l l') is-largest : (α : Ordinal 𝓤) → ⟨ α ⟩ → 𝓤 ̇ is-largest α x = (y : ⟨ α ⟩) → y ≼⟨ α ⟩ x being-largest-is-prop : Fun-Ext → (α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-prop (is-largest α x) being-largest-is-prop fe α x = Π₃-is-prop fe (λ y u _ → Prop-valuedness α u x) at-most-one-largest : (α : Ordinal 𝓤) (x y : ⟨ α ⟩) → is-largest α x → is-largest α y → x = y at-most-one-largest α x y l l' = Antisymmetry α x y (l' x) (l y) has-largest : Ordinal 𝓤 → 𝓤 ̇ has-largest α = Σ ⊤ ꞉ ⟨ α ⟩ , is-largest α ⊤ having-largest-is-prop : Fun-Ext → (α : Ordinal 𝓤) → is-prop (has-largest α) having-largest-is-prop fe α (⊥ , l) (⊥' , l') = to-subtype-= (being-largest-is-prop fe α) (at-most-one-largest α ⊥ ⊥' l l') \end{code} TODO. We should add further properties of the order from the module Notions. For the moment, we add this: \begin{code} irrefl : (α : Ordinal 𝓤) (x : ⟨ α ⟩) → ¬(x ≺⟨ α ⟩ x) irrefl α x = irreflexive (underlying-order α) x (Well-foundedness α x) ≼-gives-≾ : (α : Ordinal 𝓤) (x y : ⟨ α ⟩) → x ≼⟨ α ⟩ y → x ≾⟨ α ⟩ y ≼-gives-≾ {𝓤} α x y = ≼-coarser-than-≾ (underlying-order α) y (Well-foundedness α y) x \end{code}