Martin Escardo & Tom de Jong, July 2023. More about iterative ordinals and their relation to iterative (multi)sets. * Assuming propositional resizing, Ord is retract of 𝕄 and a also a retract of 𝕍. \begin{code} {-# OPTIONS --safe --without-K --lossy-unification #-} open import MLTT.Spartan open import UF.Univalence module Iterative.Ordinals-Addendum (ua : Univalence) {𝓤 : Universe} where open import UF.FunExt open import UF.UA-FunExt private 𝓤⁺ : Universe 𝓤⁺ = 𝓤 ⁺ fe : Fun-Ext fe = Univalence-gives-Fun-Ext ua fe' : FunExt fe' 𝓤 𝓥 = fe {𝓤} {𝓥} open import InjectiveTypes.Blackboard fe' open import Iterative.Multisets 𝓤 open import Iterative.Ordinals ua 𝓤 open import Iterative.Sets ua 𝓤 open import Ordinals.Injectivity open import Ordinals.OrdinalOfOrdinals ua open import Ordinals.Type hiding (Ord) open import UF.Embeddings open import UF.Retracts open import UF.Size open ordinals-injectivity fe' private e : Ordinal 𝓤 ↪ Ordinal 𝓤⁺ e = Ordinal-embedded-in-next-Ordinal almost-a-retraction-𝕄 : Σ f ꞉ (𝕄 → Ordinal 𝓤⁺) , f ∘ Ord-to-𝕄 ∼ ⌊ e ⌋ almost-a-retraction-𝕄 = Ordinal-is-ainjective (ua 𝓤⁺) Ord-to-𝕄 Ord-to-𝕄-is-embedding ⌊ e ⌋ almost-a-retraction-𝕍 : Σ f ꞉ (𝕍 → Ordinal 𝓤⁺) , f ∘ Ord-to-𝕍 ∼ ⌊ e ⌋ almost-a-retraction-𝕍 = Ordinal-is-ainjective (ua 𝓤⁺) Ord-to-𝕍 Ord-to-𝕍-is-embedding ⌊ e ⌋ \end{code} To get retractions we would like to extend the identity functions, rather than ⌊ e ⌋, but the universe levels get on the way. Unless we assume propositional resizing. \begin{code} Ord-is-retract-of-𝕄 : propositional-resizing 𝓤⁺ 𝓤 → retract Ord of 𝕄 Ord-is-retract-of-𝕄 pe = embedding-retract Ord 𝕄 Ord-to-𝕄 Ord-to-𝕄-is-embedding (ainjective-resizing {𝓤} {𝓤} pe (Ordinal 𝓤) (Ordinal-is-ainjective (ua 𝓤))) \end{code} TODO. Can we get the same conclusion without propositional resizing? \begin{code} Ord-is-retract-of-𝕍 : propositional-resizing 𝓤⁺ 𝓤 → retract Ord of 𝕍 Ord-is-retract-of-𝕍 pe = embedding-retract Ord 𝕍 Ord-to-𝕍 Ord-to-𝕍-is-embedding (ainjective-resizing {𝓤} {𝓤} pe (Ordinal 𝓤) (Ordinal-is-ainjective (ua 𝓤))) \end{code} It is actually possible to prove this without propositional resizing. For the retraction, we map an iterative set to its rank. For this we need set quotients or, equivalently, set replacement. This is done in [5] (see the list of references in the index file) for the higher-inductive definition of 𝕍.