Martin Escardo, 27 April 2014, with later additions, 2017, 2018, 2019. This is a "blackboard" Agda file, which means that the ideas are reported in the order they come to mind (with the very bad ideas deleted, and with some intermediate useful ideas kept, even if they are not intended to make their way to publication). See the file InjectiveTypes-article for an organized presentation. This introduction is incomplete and outdated / obsolete. Much more has been done since 2014 that is not reported here. We show that the injective types are the retracts of the exponential powers of universes, where an exponential power of a type D is a type of the form A β D for some type A. Injectivity is defined as (functional) data rather than property. Injectivity of the universe (2014) ---------------------------- Here we have definitions and proofs in Agda notation, which assume a univalent mathematics background (e.g. given by the HoTT book), preceded by informal (rigorous) discussion. We show that the universe is (pointwise right-Kan) injective wrt embeddings. An embedding is a map j:XβY whose fibers are all univalent propositions. In the remote past, I looked at injectivity in categories of spaces and locales, with respect to various kinds of maps, and I wrote several papers about that. At present, I am looking at searchable sets in type theory (corresponding to compact sets in topology), and I accidentally landed in the same injectivity territory. This file is about injectivity. Other files make use of this for searchability purposes, which is not discussed here. Abstractly, the general situation is j X ------> Y \ / \ / f \ / f/j \ / v D Given f and j, we want to find f/j making the diagram commute (that is, f = f/j β j). Of course, this "extension property" is not always possible, and it depends on properties of f, j and D. Usually, one requires j to be an embedding (of some sort). Here I consider the case that D=π€, a universe, in which case, if one doesn't want to assume univalence, then it makes sense to consider commutation up to equivalence: j X ------> Y \ / \ β / f \ / f/j \ / v π€ But this can be the case only if j is an embedding in a suitable sense. Otherwise, we only have a right-Kan extension j X ------> Y \ / \ β³ / f \ / f/j \ / v π€ in the sense that the type of natural transformations from "presheaves" g : Y β π€ to the "presheaf" f/j, written g βΎ f/j, is naturally equivalent to the type gβj βΎ f of natural transformations from gβj to f: g βΎ f/j β gβj βΎ f If j is an embedding (in the sense of univalent mathematics), then, for any f, we can find f/j which is both a right-Kan extension and a (proper) extension (up to equivalence). All this dualizes with Ξ replaced by Ξ£ and right replaced by left. \begin{code} {-# OPTIONS --safe --without-K #-} open import UF.FunExt module InjectiveTypes.Blackboard (fe : FunExt) where open import MLTT.Plus-Properties open import MLTT.Spartan open import UF.Base open import UF.Embeddings open import UF.Equiv open import UF.Equiv-FunExt open import UF.EquivalenceExamples open import UF.ClassicalLogic open import UF.IdEmbedding open import UF.Lower-FunExt open import UF.PairFun open import UF.PropIndexedPiSigma open import UF.PropTrunc open import UF.Retracts open import UF.Sets open import UF.Size open import UF.SubtypeClassifier open import UF.Subsingletons open import UF.Subsingletons-FunExt open import UF.UA-FunExt open import UF.Univalence open import UF.UniverseEmbedding private fe' : Fun-Ext fe' {π€} {π₯} = fe π€ π₯ \end{code} Here is how we define f/j given f and j. j X ------> Y \ / \ β³ / f \ / f/j \ / v π€ We have to apply the following constructions for π€=π₯=π¦ for the above triangles to make sense. We rename the type of natural transformations: \begin{code} _βΎ_ : {X : π€ Μ } β (X β π₯ Μ ) β (X β π¦ Μ ) β π€ β π₯ β π¦ Μ _βΎ_ = Nat _βΎ_-explicitly : {X : π€ Μ } (A : X β π₯ Μ ) (B : X β π¦ Μ ) β A βΎ B οΌ ((x : X) β A x β B x) _βΎ_-explicitly A B = refl \end{code} We think of A and B as some sort β-presheaves, with the category of sets replaced by a universe of β-groupoids. Natural transformations are automatically natural: for all x,y: A and p : x οΌ y, Ο x A x --------------β B x | | | | A[p] | | B[p] | | | | β β A y --------------β B y Ο y \begin{code} βΎ-naturality : {X : π€ Μ } (A : X β π₯ Μ ) (B : X β π¦ Μ ) (Ο : A βΎ B) {x y : X} (p : x οΌ y) β Ο y β transport A p οΌ transport B p β Ο x βΎ-naturality = Nats-are-natural \end{code} We now work with the following assumptions: \begin{code} module _ {X : π€ Μ } {Y : π₯ Μ } (f : X β π¦ Μ ) (j : X β Y) where Ξ -extension Ξ£-extension : Y β π€ β π₯ β π¦ Μ Ξ -extension y = Ξ (x , _) κ fiber j y , f x Ξ£-extension y = Ξ£ (x , _) κ fiber j y , f x private f/j fβj : Y β π€ β π₯ β π¦ Μ f/j = Ξ -extension fβj = Ξ£-extension Ξ£βΞ : is-embedding j β fβj βΎ f/j Ξ£βΞ e y ((x , p) , B) (x' , p') = transport f (embeddings-are-lc j e (p β p' β»ΒΉ)) B \end{code} The natural transformation Ξ£βΞ j itself should be a natural embedding (conjectural conjecture). \begin{code} Ξ·Ξ : f/j β j βΎ f Ξ·Ξ x C = C (x , refl) Ξ·Ξ£ : f βΎ fβj β j Ξ·Ξ£ x B = (x , refl) , B \end{code} For arbitrary j:XβY, this gives Kan extensions in the following sense: \begin{code} Ξ -extension-right-Kan : (g : Y β π£ Μ ) β (g βΎ f/j) β (g β j βΎ f) Ξ -extension-right-Kan {π£} g = qinveq Ο (Ο , ΟΟ' , ΟΟ') where Ο : g β j βΎ f β g βΎ f/j Ο Ξ· .(j x) C (x , refl) = Ξ· x C Ο : g βΎ f/j β g β j βΎ f Ο ΞΈ x C = ΞΈ (j x) C (x , refl) ΟΟ : (Ξ· : g β j βΎ f) (x : X) (C : g (j x)) β Ο (Ο Ξ·) x C οΌ Ξ· x C ΟΟ Ξ· x C = refl ΟΟ' : (Ξ· : g β j βΎ f) β Ο (Ο Ξ·) οΌ Ξ· ΟΟ' Ξ· = dfunext (fe π€ (π¦ β π£)) (Ξ» x β dfunext (fe π£ π¦) (ΟΟ Ξ· x)) ΟΟ : (ΞΈ : g βΎ f/j) (y : Y) (C : g y) (w : fiber j y) β Ο (Ο ΞΈ) y C w οΌ ΞΈ y C w ΟΟ ΞΈ y C (x , refl) = refl ΟΟ' : (ΞΈ : g βΎ f/j) β Ο (Ο ΞΈ) οΌ ΞΈ ΟΟ' ΞΈ = dfunext (fe π₯ (π€ β π₯ β π¦ β π£)) (Ξ» y β dfunext (fe π£ (π€ β π₯ β π¦)) (Ξ» C β dfunext (fe (π€ β π₯) π¦) (ΟΟ ΞΈ y C))) Ξ£-extension-left-Kan : (g : Y β π£ Μ ) β (fβj βΎ g) β (f βΎ g β j) Ξ£-extension-left-Kan {π£} g = e where Ο : f βΎ g β j β fβj βΎ g Ο Ξ· .(j x) ((x , refl) , C) = Ξ· x C Ο : fβj βΎ g β f βΎ g β j Ο ΞΈ x B = ΞΈ (j x) ((x , refl) , B) ΟΟ : (ΞΈ : fβj βΎ g) (y : Y) (B : fβj y) β Ο (Ο ΞΈ) y B οΌ ΞΈ y B ΟΟ ΞΈ y ((x , refl) , B) = refl ΟΟ : (Ξ· : f βΎ g β j) (x : X) (B : f x) β Ο (Ο Ξ·) x B οΌ Ξ· x B ΟΟ Ξ· x B = refl e : fβj βΎ g β f βΎ g β j e = Ο , (Ο , Ξ» Ξ· β dfunext (fe π€ (π¦ β π£)) (Ξ» x β dfunext (fe π¦ π£) (Ξ» B β ΟΟ Ξ· x B))) , (Ο , Ξ» ΞΈ β dfunext (fe π₯ (π€ β π₯ β π¦ β π£)) (Ξ» y β dfunext (fe (π€ β π₯ β π¦) π£) (Ξ» C β ΟΟ ΞΈ y C))) \end{code} Conjectural conjecture: the type Ξ£ (f' : Y β π€), Ξ (g : Y β π€), g βΎ f' β g β j βΎ f should be contractible assuming univalence. Similarly for left Kan extensions as discussed below. The above formula actually give extensions up to pointwise equivalence if j:XβY is an embedding in the sense of univalent mathematics. \begin{code} Ξ -extension-property : is-embedding j β (x : X) β f/j (j x) β f x Ξ -extension-property e x = prop-indexed-product (fe (π€ β π₯) π¦) {fiber j (j x)} {Ξ» (z : fiber j (j x)) β f (fiber-point z)} (e (j x)) (x , refl) Ξ -extension-equivalence : is-embedding j β (x : X) β is-equiv (Ξ -proj (x , refl)) Ξ -extension-equivalence e x = prβ (Ξ -extension-property e x) Ξ -extension-out-of-range : {π¦ : Universe} (y : Y) β ((x : X) β j x β y) β f/j (y) β π {π¦} Ξ -extension-out-of-range y Ο = prop-indexed-product-one (fe (π€ β π₯) π¦) (uncurry Ο) Ξ£-extension-property : is-embedding j β (x : X) β fβj (j x) β f x Ξ£-extension-property e x = prop-indexed-sum (e (j x)) (x , refl) Ξ£-extension-out-of-range : {π¦ : Universe} (y : Y) β ((x : X) β j x β y) β fβj (y) β π {π¦} Ξ£-extension-out-of-range y Ο = prop-indexed-sum-zero (uncurry Ο) \end{code} We now rewrite the Ξ -extension formula in an equivalent way: \begin{code} 2nd-Ξ -extension-formula : (y : Y) β f/j (y) β (Ξ x κ X , (j x οΌ y β f x)) 2nd-Ξ -extension-formula y = curry-uncurry fe 2nd-Ξ -extension-formula' : (y : Y) β f/j (y) β (Ξ» x β j x οΌ y) βΎ f 2nd-Ξ -extension-formula' = 2nd-Ξ -extension-formula 2nd-Ξ£-extension-formula : (y : Y) β fβj (y) β (Ξ£ x κ X , (j x οΌ y) Γ f x) 2nd-Ξ£-extension-formula y = Ξ£-assoc \end{code} This is the Ξ -extension formula we actually used for (1) showing that the universe is indiscrete, and (2) defining the squashed sum and proving that it preserves searchability. \begin{code} Ξ -observation : is-embedding j β (a : X) β f a β (Ξ x κ X , (j x οΌ j a β f x)) Ξ -observation e a = β-sym ((β-sym (2nd-Ξ -extension-formula (j a))) β (Ξ -extension-property e a)) Ξ£-observation : is-embedding j β (a : X) β f a β (Ξ£ x κ X , (j x οΌ j a) Γ f x) Ξ£-observation e a = β-sym ((β-sym (2nd-Ξ£-extension-formula (j a))) β (Ξ£-extension-property e a)) \end{code} Added December 2017: The extensions f/j and fβj have the same product and sum as f respectively: \begin{code} same-Ξ : Ξ f β Ξ f/j same-Ξ = F , (G , FG) , (G , GF) where F : Ξ f β Ξ f/j F Ο y (x , p) = Ο x G : Ξ f/j β Ξ f G Ο x = Ο (j x) (x , refl) FG' : (Ο : Ξ f/j) (y : Y) (Ο : fiber j y) β F (G Ο) y Ο οΌ Ο y Ο FG' Ο x (_ , refl) = refl FG : (Ο : Ξ f/j) β F (G Ο) οΌ Ο FG Ο = dfunext (fe π₯ (π€ β π₯ β π¦)) (Ξ» y β dfunext (fe (π€ β π₯) π¦) (FG' Ο y)) GF : (Ο : Ξ f) β G (F Ο) οΌ Ο GF Ο = refl same-Ξ£ : Ξ£ f β Ξ£ fβj same-Ξ£ = F , (G , FG) , (G , GF) where F : Ξ£ f β Ξ£ fβj F (x , y) = (j x , (x , refl) , y) G : Ξ£ fβj β Ξ£ f G (y , (x , p) , y') = (x , y') FG : (Ο : Ξ£ fβj) β F (G Ο) οΌ Ο FG (x , (_ , refl) , y') = refl GF : (Ο : Ξ£ f) β G (F Ο) οΌ Ο GF (x , y) = refl \end{code} We now introduce the notations f / j and f β j for the Ξ - and Ξ£-extensions, outside the above anonymous module. \begin{code} _/_ _β_ : {X : π€ Μ } {Y : π₯ Μ } β (X β π¦ Μ ) β (X β Y) β (Y β π€ β π₯ β π¦ Μ ) f / j = Ξ -extension f j f β j = Ξ£-extension f j infix 7 _/_ \end{code} Also added December 2017. A different notation reflects a different view of these processes: \begin{code} inverse-image : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β (Y β π¦ Μ ) β (X β π¦ Μ ) inverse-image f v = v β f Ξ -image Ξ£-image : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β (X β π¦ Μ ) β (Y β π€ β π₯ β π¦ Μ ) Ξ -image j = Ξ» f β Ξ -extension f j Ξ£-image j = Ξ» f β Ξ£-extension f j \end{code} Ξ£-images of singletons. Another way to see the following is with the function same-Ξ£ defined above. This and univalence give Ξ£ (Id x) οΌ Ξ£ (Id x β j) = Ξ£-image j (Id x) Hence is-singleton (Ξ£ (Id x)) οΌ is-singleton (Ξ£-image j (Id x)) But the lhs holds, and hence is-singleton (Ξ£-image j (Id x)). \begin{code} Ξ£-image-of-singleton-lemma : {X : π€ Μ } {Y : π₯ Μ } (j : X β Y) (x : X) (y : Y) β Ξ£-image j (Id x) y β Id (j x) y Ξ£-image-of-singleton-lemma {π€} {π₯} {X} {Y} j x y = (f , (g , fg) , (g , gf)) where f : Ξ£-image j (Id x) y β Id (j x) y f ((x , refl) , refl) = refl g : Id (j x) y β Ξ£-image j (Id x) y g refl = (x , refl) , refl gf : (i : Ξ£-image j (Id x) y) β g (f i) οΌ i gf ((x , refl) , refl) = refl fg : (p : Id (j x) y) β f (g p) οΌ p fg refl = refl Ξ£-image-of-singleton-lemma' : {X : π€ Μ } {Y : π₯ Μ } β (j : X β Y) (x : X) (y : Y) β (((Id x) β j) y) β (j x οΌ y) Ξ£-image-of-singleton-lemma' = Ξ£-image-of-singleton-lemma Ξ£-image-of-singleton : {X Y : π€ Μ } β is-univalent π€ β (j : X β Y) (x : X) β Ξ£-image j (Id x) οΌ Id (j x) Ξ£-image-of-singleton {π€} {X} {Y} ua j x = b where a : (y : Y) β Ξ£-image j (Id x) y οΌ Id (j x) y a y = eqtoid ua (Ξ£-image j (Id x) y) (Id (j x) y) (Ξ£-image-of-singleton-lemma j x y) b : Ξ£-image j (Id x) οΌ Id (j x) b = dfunext (fe π€ (π€ βΊ)) a Ξ£-image-of-singleton' : {X Y : π€ Μ } β is-univalent π€ β (j : X β Y) (x : X) β (Id x) β j οΌ Id (j x) Ξ£-image-of-singleton' = Ξ£-image-of-singleton \end{code} There is more to do about this. \begin{code} Ξ -extension-is-extension : is-univalent (π€ β π₯) β {X : π€ Μ } {Y : π₯ Μ } (j : X β Y) β is-embedding j β (f : X β π€ β π₯ Μ ) β (f / j) β j βΌ f Ξ -extension-is-extension ua j e f x = eqtoid ua _ _ (Ξ -extension-property f j e x) Ξ -extension-is-extension' : is-univalent (π€ β π₯) β funext π€ ((π€ β π₯)βΊ) β {X : π€ Μ } {Y : π₯ Μ } (j : X β Y) β is-embedding j β (f : X β π€ β π₯ Μ ) β (f / j) β j οΌ f Ξ -extension-is-extension' ua fe j e f = dfunext fe (Ξ -extension-is-extension ua j e f) Ξ -extension-is-extension'' : is-univalent (π€ β π₯) β funext ((π€ β π₯)βΊ) ((π€ β π₯)βΊ) β {X : π€ Μ } {Y : π₯ Μ } (j : X β Y) β is-embedding j β (Ξ» f β (f / j) β j) οΌ id Ξ -extension-is-extension'' {π€} {π₯} ua fe j e = dfunext fe (Ξ -extension-is-extension' ua (lower-fun-ext π€ fe) j e) Ξ£-extension-is-extension : is-univalent (π€ β π₯) β {X : π€ Μ } {Y : π₯ Μ } (j : X β Y) β is-embedding j β (f : X β π€ β π₯ Μ ) β (f β j) β j βΌ f Ξ£-extension-is-extension ua j e f x = eqtoid ua _ _ (Ξ£-extension-property f j e x) Ξ£-extension-is-extension' : is-univalent (π€ β π₯) β funext π€ ((π€ β π₯)βΊ) β {X : π€ Μ } {Y : π₯ Μ } (j : X β Y) β is-embedding j β (f : X β π€ β π₯ Μ ) β (f β j) β j οΌ f Ξ£-extension-is-extension' ua fe j e f = dfunext fe (Ξ£-extension-is-extension ua j e f) Ξ£-extension-is-extension'' : is-univalent (π€ β π₯) β funext ((π€ β π₯)βΊ) ((π€ β π₯)βΊ) β {X : π€ Μ } {Y : π₯ Μ } (j : X β Y) β is-embedding j β (Ξ» f β (f β j) β j) οΌ id Ξ£-extension-is-extension'' {π€} {π₯} ua fe j e = dfunext fe (Ξ£-extension-is-extension' ua (lower-fun-ext π€ fe) j e) \end{code} We now consider injectivity, defined with Ξ£ rather than β (that is, as data rather than property), called algebraic injectivity. \begin{code} ainjective-type : π¦ Μ β (π€ π₯ : Universe) β π€ βΊ β π₯ βΊ β π¦ Μ ainjective-type D π€ π₯ = {X : π€ Μ } {Y : π₯ Μ } (j : X β Y) β is-embedding j β (f : X β D) β Ξ£ f' κ (Y β D) , f' β j βΌ f embedding-retract : (D : π¦ Μ ) (Y : π₯ Μ ) (j : D β Y) β is-embedding j β ainjective-type D π¦ π₯ β retract D of Y embedding-retract D Y j e i = prβ a , j , prβ a where a : Ξ£ f' κ (Y β D) , f' β j βΌ id a = i j e id retract-of-ainjective : (D' : π¦' Μ ) (D : π¦ Μ ) β ainjective-type D π€ π₯ β retract D' of D β ainjective-type D' π€ π₯ retract-of-ainjective D' D i (r , s , rs) {X} {Y} j e f = Ο a where a : Ξ£ f' κ (Y β D) , f' β j βΌ s β f a = i j e (s β f) Ο : (Ξ£ f' κ (Y β D) , f' β j βΌ s β f) β Ξ£ f'' κ (Y β D') , f'' β j βΌ f Ο (f' , h) = r β f' , (Ξ» x β ap r (h x) β rs (f x)) equiv-to-ainjective : (D' : π¦' Μ ) (D : π¦ Μ ) β ainjective-type D π€ π₯ β D' β D β ainjective-type D' π€ π₯ equiv-to-ainjective D' D i e = retract-of-ainjective D' D i (β-gives-β e) universes-are-ainjective-Ξ : is-univalent (π€ β π₯) β ainjective-type (π€ β π₯ Μ ) π€ π₯ universes-are-ainjective-Ξ ua j e f = f / j , Ξ -extension-is-extension ua j e f universes-are-ainjective-Ξ ' : is-univalent π€ β ainjective-type (π€ Μ ) π€ π€ universes-are-ainjective-Ξ ' = universes-are-ainjective-Ξ universes-are-ainjective-Ξ£ : is-univalent (π€ β π₯) β ainjective-type (π€ β π₯ Μ ) π€ π₯ universes-are-ainjective-Ξ£ ua j e f = f β j , (Ξ» x β eqtoid ua _ _ (Ξ£-extension-property f j e x)) universes-are-ainjective : is-univalent (π€ β π₯) β ainjective-type (π€ β π₯ Μ ) π€ π₯ universes-are-ainjective = universes-are-ainjective-Ξ ainjective-is-retract-of-power-of-universe : (D : π€ Μ ) β is-univalent π€ β ainjective-type D π€ (π€ βΊ) β retract D of (D β π€ Μ ) ainjective-is-retract-of-power-of-universe {π€} D ua = embedding-retract D (D β π€ Μ ) Id (UA-Id-embedding ua fe) Ξ -ainjective : {A : π£ Μ } {D : A β π¦ Μ } β ((a : A) β ainjective-type (D a) π€ π₯) β ainjective-type (Ξ D) π€ π₯ Ξ -ainjective {π£} {π¦} {π€} {π₯} {A} {D} i {X} {Y} j e f = f' , g where l : (a : A) β Ξ£ h κ (Y β D a) , h β j βΌ (Ξ» x β f x a) l a = i a j e (Ξ» x β f x a) f' : Y β (a : A) β D a f' y a = prβ (l a) y g : f' β j βΌ f g x = dfunext (fe π£ π¦) (Ξ» a β prβ (l a) x) power-of-ainjective : {A : π£ Μ } {D : π¦ Μ } β ainjective-type D π€ π₯ β ainjective-type (A β D) π€ π₯ power-of-ainjective i = Ξ -ainjective (Ξ» a β i) every-type-can-be-embedded-into-an-ainjective-type : is-univalent (π€ β π₯) β (X : π€ β π₯ Μ ) β Ξ£ D κ (π€ β π₯)βΊ Μ , Ξ£ e κ X βͺ D , ainjective-type D π€ π₯ every-type-can-be-embedded-into-an-ainjective-type {π€} {π₯} ua X = (X β π€ β π₯ Μ) , (Id , UA-Id-embedding ua fe) , power-of-ainjective (universes-are-ainjective ua) \end{code} The following is the first of a number of injectivity resizing constructions: \begin{code} ainjective-resizingβ : is-univalent π€ β (D : π€ Μ ) β ainjective-type D π€ (π€ βΊ) β ainjective-type D π€ π€ ainjective-resizingβ {π€} ua D i = Ο (ainjective-is-retract-of-power-of-universe D ua i) where Ο : retract D of (D β π€ Μ ) β ainjective-type D π€ π€ Ο = retract-of-ainjective D (D β π€ Μ ) (power-of-ainjective (universes-are-ainjective-Ξ ua)) \end{code} Propositional resizing gives a much more general injectivity resizing (see below). Added 18th July 2018. Notice that the function e : X β Y doesn't need to be an embedding and that the proof is completely routine. \begin{code} retract-extension : {X : π€ Μ } {Y : π₯ Μ } (A : X β π¦ Μ ) (B : X β π£ Μ ) (e : X β Y) β ((x : X) β retract (A x) of (B x)) β ((y : Y) β retract ((A / e) y) of ((B / e) y)) retract-extension {π€} {π₯} {π¦} {π£} {X} {Y} A B e Ο y = r , s , rs where R : (x : X) β B x β A x R x = retraction (Ο x) S : (x : X) β A x β B x S x = section (Ο x) RS : (x : X) (a : A x) β R x (S x a) οΌ a RS x = retract-condition (Ο x) r : (B / e) y β (A / e) y r v (x , p) = R x (v (x , p)) s : (A / e) y β (B / e) y s u (x , p) = S x (u (x , p)) h : (u : (A / e) y) (Ο : fiber e y) β r (s u) Ο οΌ u Ο h u (x , p) = RS x (u (x , p)) rs : (u : (A / e) y) β r (s u) οΌ u rs u = dfunext (fe (π€ β π₯) π¦) (h u) \end{code} Added 25th July 2018. \begin{code} iterated-extension : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } {A : X β π£ Μ } (j : X β Y) (k : Y β Z) β (z : Z) β ((A / j) / k) z β (A / (k β j)) z iterated-extension {π€} {π₯} {π¦} {π£} {X} {Y} {Z} {A} j k z = Ξ³ where f : ((A / j) / k) z β (A / (k β j)) z f u (x , p) = u (j x , p) (x , refl) g : (A / (k β j)) z β ((A / j) / k) z g v (.(j x) , q) (x , refl) = v (x , q) fg : (v : (A / (k β j)) z) β f (g v) οΌ v fg v = refl gf' : (u : ((A / j) / k) z) (w : fiber k z) (t : fiber j (fiber-point w)) β g (f u) w t οΌ u w t gf' u (.(j x) , q) (x , refl) = refl gf : (u : ((A / j) / k) z) β g (f u) οΌ u gf u = dfunext (fe (π₯ β π¦) (π€ β π₯ β π£)) (Ξ» w β dfunext (fe (π€ β π₯) π£) (gf' u w)) Ξ³ : ((A / j) / k) z β (A / (k β j)) z Ξ³ = f , ((g , fg) , (g , gf)) \end{code} Added 9th November 2018. We want to show that f β¦ f/j is an embedding of (X β π€) into (Y β π€) if j is an embedding. j X ------> Y \ / \ / f \ / f/j \ / v π€ The simplest case is X = P and Y = π, where P is a proposition. Then the map P β π is an embedding. j P ------> π \ / \ / f \ / (f / j) (x) = Ξ (w : fiber j x) β f (fiber-point w) \ / β Ξ (p : P) β j p οΌ x β f p v β Ξ (p : P) β f p π€ So in essence we are considering the map s : (P β π€) β π€ defined by s f = Ξ (p : P) β f p. Then, for any X : π€, fiber s X = Ξ£ f κ P β π€ , (Ξ (p : P) β f p) οΌ X. A few days pause. Now 15th Nov 2018 after a discussion in the HoTT list. https://groups.google.com/d/topic/homotopytypetheory/xvx5hOEPnDs/discussion Here is my take on the outcome of the discussion, following independent solutions by Shulman and Capriotti. \begin{code} module /-extension-is-embedding-special-case (P : π€ Μ ) (i : is-prop P) (fe' : funext π€ (π€ βΊ)) (ua : is-univalent π€) where feuu : funext π€ π€ feuu = univalence-gives-funext ua r : π€ Μ β (P β π€ Μ ) r X p = X s : (P β π€ Μ ) β π€ Μ s = Ξ rs : β A β r (s A) οΌ A rs A = dfunext fe' (Ξ» p β eqtoid ua (s A) (A p) (prop-indexed-product feuu i p)) sr : β X β s (r X) οΌ (P β X) sr X = refl ΞΊ : (X : π€ Μ ) β X β s (r X) ΞΊ X x p = x M : π€ βΊ Μ M = Ξ£ X κ π€ Μ , is-equiv (ΞΊ X) Ο : (P β π€ Μ ) β M Ο A = s A , qinvs-are-equivs (ΞΊ (s A)) (Ξ΄ , Ξ΅ , Ξ·) where Ξ΄ : (P β s A) β s A Ξ΄ v p = v p p Ξ· : (v : P β s A) β ΞΊ (s A) (Ξ΄ v) οΌ v Ξ· v = dfunext feuu (Ξ» p β dfunext feuu (Ξ» q β ap (Ξ» - β v - q) (i q p))) Ξ΅ : (u : Ξ A) β Ξ΄ (ΞΊ (s A) u) οΌ u Ξ΅ u = refl Ξ³ : M β (P β π€ Μ ) Ξ³ (X , i) = r X ΟΞ³ : (m : M) β Ο (Ξ³ m) οΌ m ΟΞ³ (X , i) = to-Ξ£-οΌ (eqtoid ua (P β X) X (β-sym (ΞΊ X , i)) , being-equiv-is-prop fe (ΞΊ X) _ i) Ξ³Ο : (A : P β π€ Μ ) β Ξ³ (Ο A) οΌ A Ξ³Ο = rs Ο-is-equiv : is-equiv Ο Ο-is-equiv = qinvs-are-equivs Ο (Ξ³ , Ξ³Ο , ΟΞ³) Ο-is-embedding : is-embedding Ο Ο-is-embedding = equivs-are-embeddings Ο Ο-is-equiv Ο : M β π€ Μ Ο = prβ Ο-is-embedding : is-embedding Ο Ο-is-embedding = prβ-is-embedding (Ξ» X β being-equiv-is-prop fe (ΞΊ X)) s-is-comp : s οΌ Ο β Ο s-is-comp = refl s-is-embedding : is-embedding s s-is-embedding = β-is-embedding Ο-is-embedding Ο-is-embedding \end{code} Also 15th Nov 2018. We have a dual situation: \begin{code} module β-extension-is-embedding-special-case (P : π€ Μ ) (i : is-prop P) (fe' : funext π€ (π€ βΊ)) (ua : is-univalent π€) where s : (P β π€ Μ ) β π€ Μ s = Ξ£ r : π€ Μ β (P β π€ Μ ) r X p = X rs : β A β r (s A) οΌ A rs A = dfunext fe' (Ξ» p β eqtoid ua (Ξ£ A) (A p) (prop-indexed-sum i p)) sr : β X β s (r X) οΌ P Γ X sr X = refl ΞΊ : (X : π€ Μ ) β s (r X) β X ΞΊ X = prβ C : π€ βΊ Μ C = Ξ£ X κ π€ Μ , is-equiv (ΞΊ X) Ο : (P β π€ Μ ) β C Ο A = s A , qinvs-are-equivs (ΞΊ (s A)) (Ξ΄ , Ξ΅ , Ξ·) where Ξ΄ : s A β P Γ s A Ξ΄ (p , a) = p , p , a Ξ· : (Ο : s A) β ΞΊ (s A) (Ξ΄ Ο) οΌ Ο Ξ· Ο = refl Ξ΅ : (Ο : P Γ s A) β Ξ΄ (ΞΊ (s A) Ο) οΌ Ο Ξ΅ (p , q , a) = to-Γ-οΌ (i q p) refl Ξ³ : C β (P β π€ Μ ) Ξ³ (X , i) = r X ΟΞ³ : (c : C) β Ο (Ξ³ c) οΌ c ΟΞ³ (X , i) = to-Ξ£-οΌ (eqtoid ua (P Γ X) X (ΞΊ X , i) , (being-equiv-is-prop fe (ΞΊ X) _ i)) Ξ³Ο : (A : P β π€ Μ ) β Ξ³ (Ο A) οΌ A Ξ³Ο = rs Ο-is-equiv : is-equiv Ο Ο-is-equiv = qinvs-are-equivs Ο (Ξ³ , Ξ³Ο , ΟΞ³) Ο-is-embedding : is-embedding Ο Ο-is-embedding = equivs-are-embeddings Ο Ο-is-equiv Ο : C β π€ Μ Ο = prβ Ο-is-embedding : is-embedding Ο Ο-is-embedding = prβ-is-embedding (Ξ» X β being-equiv-is-prop fe (ΞΊ X)) s-is-comp : s οΌ Ο β Ο s-is-comp = refl s-is-embedding : is-embedding s s-is-embedding = β-is-embedding Ο-is-embedding Ο-is-embedding \end{code} Added 20th November 2018. \begin{code} module /-extension-is-embedding (X Y : π€ Μ ) (j : X β Y) (i : is-embedding j) (fe' : funext π€ (π€ βΊ)) (ua : is-univalent π€) where feuu : funext π€ π€ feuu = univalence-gives-funext ua s : (X β π€ Μ ) β (Y β π€ Μ ) s f = f / j r : (Y β π€ Μ ) β (X β π€ Μ ) r g = g β j rs : β f β r (s f) οΌ f rs = Ξ -extension-is-extension' ua fe' j i sr : β g β s (r g) οΌ (g β j) / j sr g = refl ΞΊ : (g : Y β π€ Μ ) β g βΎ s (r g) ΞΊ g y C (x , p) = transportβ»ΒΉ g p C M : (π€ βΊ) Μ M = Ξ£ g κ (Y β π€ Μ ), ((y : Y) β is-equiv (ΞΊ g y)) Ο : (X β π€ Μ ) β M Ο f = s f , e where e : (y : Y) β is-equiv (ΞΊ (s f) y) e y = qinvs-are-equivs (ΞΊ (s f) y) (Ξ΄ , Ξ΅ , Ξ·) where Ξ΄ : (((f / j) β j) / j) y β (f / j) y Ξ΄ C (x , p) = C (x , p) (x , refl) Ξ· : (C : ((f / j β j) / j) y) β ΞΊ (s f) y (Ξ΄ C) οΌ C Ξ· C = dfunext feuu g where g : (w : fiber j y) β ΞΊ (s f) y (Ξ΄ C) w οΌ C w g (x , refl) = dfunext feuu h where h : (t : fiber j (j x)) β C t (prβ t , refl) οΌ C (x , refl) t h (x' , p') = transport (Ξ» - β C - (prβ - , refl) οΌ C (x , refl) -) q refl where q : (x , refl) οΌ (x' , p') q = i (j x) (x , refl) (x' , p') Ξ΅ : (a : (f / j) y) β Ξ΄ (ΞΊ (s f) y a) οΌ a Ξ΅ a = dfunext feuu g where g : (w : fiber j y) β Ξ΄ (ΞΊ (s f) y a) w οΌ a w g (x , refl) = refl Ξ³ : M β (X β π€ Μ ) Ξ³ (g , e) = r g ΟΞ³ : β m β Ο (Ξ³ m) οΌ m ΟΞ³ (g , e) = to-Ξ£-οΌ (dfunext fe' (Ξ» y β eqtoid ua (s (r g) y) (g y) (β-sym (ΞΊ g y , e y))) , Ξ -is-prop feuu (Ξ» y β being-equiv-is-prop'' feuu (ΞΊ g y)) _ e) Ξ³Ο : β f β Ξ³ (Ο f) οΌ f Ξ³Ο = rs Ο-is-equiv : is-equiv Ο Ο-is-equiv = qinvs-are-equivs Ο (Ξ³ , Ξ³Ο , ΟΞ³) Ο-is-embedding : is-embedding Ο Ο-is-embedding = equivs-are-embeddings Ο Ο-is-equiv Ο : M β (Y β π€ Μ ) Ο = prβ Ο-is-embedding : is-embedding Ο Ο-is-embedding = prβ-is-embedding (Ξ» g β Ξ -is-prop feuu (Ξ» y β being-equiv-is-prop'' feuu (ΞΊ g y))) s-is-comp : s οΌ Ο β Ο s-is-comp = refl s-is-embedding : is-embedding s s-is-embedding = β-is-embedding Ο-is-embedding Ο-is-embedding \end{code} Added 21th November 2018. \begin{code} module β-extension-is-embedding (X Y : π€ Μ ) (j : X β Y) (i : is-embedding j) (fe' : funext π€ (π€ βΊ)) (ua : is-univalent π€) where feuu : funext π€ π€ feuu = univalence-gives-funext ua s : (X β π€ Μ ) β (Y β π€ Μ ) s f = f β j r : (Y β π€ Μ ) β (X β π€ Μ ) r g = g β j rs : β f β r (s f) οΌ f rs = Ξ£-extension-is-extension' ua fe' j i sr : β g β s (r g) οΌ (g β j) β j sr g = refl ΞΊ : (g : Y β π€ Μ ) β s (r g) βΎ g ΞΊ g y ((x , p) , C) = transport g p C M : (π€ βΊ) Μ M = Ξ£ g κ (Y β π€ Μ ), ((y : Y) β is-equiv (ΞΊ g y)) Ο : (X β π€ Μ ) β M Ο f = s f , e where e : (y : Y) β is-equiv (ΞΊ (s f) y) e y = qinvs-are-equivs (ΞΊ (s f) y) (Ξ΄ , Ξ΅ , Ξ·) where Ξ΄ : (Ξ£ (x , _) κ fiber j y , f x) β Ξ£ t κ fiber j y , Ξ£ (x , _) κ fiber j (j (prβ t)), f x Ξ΄ ((x , p) , C) = (x , p) , (x , refl) , C Ξ· : (Ο : s f y) β ΞΊ (s f) y (Ξ΄ Ο) οΌ Ο Ξ· ((x , refl) , C) = refl Ξ΅ : (Ο : Ξ£ (Ξ» w β r (s f) (prβ w))) β Ξ΄ (ΞΊ (s f) y Ο) οΌ Ο Ξ΅ ((x , refl) , (x' , p') , C) = t x x' (pa x' x p') p' C (appa x x' p') where t : (x x' : X) (u : x' οΌ x) (p : j x' οΌ j x) (C : f x') β ap j u οΌ p β ((x' , p) , (x' , refl) , C) οΌ[ Ξ£ (x , _) κ fiber j (j x) , r (s f) x ] ((x , refl) , (x' , p) , C) t x x refl p C refl = refl ej' : β x x' β qinv (ap j {x} {x'}) ej' x x' = equivs-are-qinvs (ap j) (embedding-gives-embedding' j i x x') pa : β x x' β j x οΌ j x' β x οΌ x' pa x x' = prβ (ej' x x') appa : β x x' p' β ap j (pa x' x p') οΌ p' appa x x' = prβ (prβ (ej' x' x)) Ξ³ : M β (X β π€ Μ ) Ξ³ (g , e) = r g ΟΞ³ : β m β Ο (Ξ³ m) οΌ m ΟΞ³ (g , e) = to-Ξ£-οΌ (dfunext fe' (Ξ» y β eqtoid ua (s (r g) y) (g y) (ΞΊ g y , e y)) , Ξ -is-prop feuu (Ξ» y β being-equiv-is-prop'' feuu (ΞΊ g y)) _ e) Ξ³Ο : β f β Ξ³ (Ο f) οΌ f Ξ³Ο = rs Ο-is-equiv : is-equiv Ο Ο-is-equiv = qinvs-are-equivs Ο (Ξ³ , Ξ³Ο , ΟΞ³) Ο-is-embedding : is-embedding Ο Ο-is-embedding = equivs-are-embeddings Ο Ο-is-equiv Ο : M β (Y β π€ Μ ) Ο = prβ Ο-is-embedding : is-embedding Ο Ο-is-embedding = prβ-is-embedding (Ξ» g β Ξ -is-prop feuu (Ξ» y β being-equiv-is-prop'' feuu (ΞΊ g y))) s-is-comp : s οΌ Ο β Ο s-is-comp = refl s-is-embedding : is-embedding s s-is-embedding = β-is-embedding Ο-is-embedding Ο-is-embedding \end{code} Added 23rd Nov 2018, version of 21st January 2019: The notion of flabbiness used in topos theory is defined with truncated Ξ£, that is, β. We refer to the notion defined with Ξ£ as algebraic flabbiness. \begin{code} aflabby : π¦ Μ β (π€ : Universe) β π¦ β π€ βΊ Μ aflabby D π€ = (P : π€ Μ ) β is-prop P β (f : P β D) β Ξ£ d κ D , ((p : P) β d οΌ f p) aflabby-extension : {D : π¦ Μ } β aflabby D π€ β (p : Ξ© π€) β (p holds β D) β D aflabby-extension Ο (P , P-is-prop) f = prβ (Ο P P-is-prop f) aflabby-extension-property : {D : π¦ Μ } (Ο : aflabby D π€) (p : Ξ© π€) (f : (p holds β D)) (h : p holds) β aflabby-extension Ο p f οΌ f h aflabby-extension-property Ο (P , P-is-prop) f = prβ (Ο P P-is-prop f) aflabby-pointed : (D : π¦ Μ ) β aflabby D π€ β D aflabby-pointed D Ο = prβ (Ο π π-is-prop unique-from-π) ainjective-types-are-aflabby : (D : π¦ Μ ) β ainjective-type D π€ π₯ β aflabby D π€ ainjective-types-are-aflabby {π¦} {π€} {π₯} D i P isp f = prβ I β , prβ I where I : Ξ£ f' κ (π β D) , f' β unique-to-π βΌ f I = i unique-to-π (unique-to-π-is-embedding P isp π₯) f aflabby-types-are-ainjective : (D : π¦ Μ ) β aflabby D (π€ β π₯) β ainjective-type D π€ π₯ aflabby-types-are-ainjective D Ο {X} {Y} j e f = f' , p where g : (y : Y) β fiber j y β D g y (x , p) = f x f' : Y β D f' y = aflabby-extension Ο (fiber j y , e y) (g y) p : (x : X) β f' (j x) οΌ f x p x = q (x , refl) where q : (w : fiber j (j x)) β f' (j x) οΌ g (j x) w q = aflabby-extension-property Ο (fiber j (j x) , e (j x)) (g (j x)) \end{code} Because Ξ© π€ is a retract of π€ via propositional truncation, it is injective. But we can prove this directly without assumming propositional truncations, and propositional and functional extensionality (which give propositional univalence) are enough, whereas the injectivity of the universe requires full univalence. \begin{code} Ξ©-aflabby : propext (π€ β π₯) β aflabby (Ξ© (π€ β π₯)) π€ Ξ©-aflabby {π€} {π₯} pe P i f = (Q , j) , c where Q : π€ β π₯ Μ Q = (p : P) β f p holds j : is-prop Q j = Ξ -is-prop (fe π€ (π€ β π₯)) (Ξ» p β holds-is-prop (f p)) c : (p : P) β Q , j οΌ f p c p = to-subtype-οΌ (Ξ» _ β being-prop-is-prop (fe (π€ β π₯) (π€ β π₯))) t where g : Q β f p holds g q = q p h : f p holds β Q h r p' = transport (Ξ» - β f - holds) (i p p') r t : Q οΌ f p holds t = pe j (holds-is-prop (f p)) g h Ξ©-ainjective : propext (π€ β π₯) β ainjective-type (Ξ© (π€ β π₯)) π€ π₯ Ξ©-ainjective {π€} {π₯} pe = aflabby-types-are-ainjective (Ξ© (π€ β π₯)) (Ξ©-aflabby {π€ β π₯} {π€} pe) \end{code} Added 6th Feb 2019. The injectivity of all types is logically equivalent to excluded middle (even though excluded middle is a proposition but injectivity is data): \begin{code} EM-gives-pointed-types-aflabby : (D : π¦ Μ ) β EM π€ β D β aflabby D π€ EM-gives-pointed-types-aflabby {π¦} {π€} D em d P i f = h (em P i) where h : P + Β¬ P β Ξ£ d κ D , ((p : P) β d οΌ f p) h (inl p) = f p , (Ξ» q β ap f (i p q)) h (inr n) = d , (Ξ» p β π-elim (n p)) aflabby-EM-lemma : (P : π¦ Μ ) β is-prop P β aflabby ((P + Β¬ P) + π) π¦ β P + Β¬ P aflabby-EM-lemma {π¦} P i Ο = Ξ³ where D = (P + Β¬ P) + π {π¦} f : P + Β¬ P β D f (inl p) = inl (inl p) f (inr n) = inl (inr n) d : D d = prβ (Ο (P + Β¬ P) (decidability-of-prop-is-prop (fe π¦ π€β) i) f) ΞΊ : (z : P + Β¬ P) β d οΌ f z ΞΊ = prβ (Ο (P + Β¬ P) (decidability-of-prop-is-prop (fe π¦ π€β) i) f) a : (p : P) β d οΌ inl (inl p) a p = ΞΊ (inl p) b : (n : Β¬ P) β d οΌ inl (inr n) b n = ΞΊ (inr n) Ξ΄ : (d' : D) β d οΌ d' β P + Β¬ P Ξ΄ (inl (inl p)) r = inl p Ξ΄ (inl (inr n)) r = inr n Ξ΄ (inr β) r = π-elim (m n) where n : Β¬ P n p = π-elim (+disjoint ((a p)β»ΒΉ β r)) m : ¬¬ P m n = π-elim (+disjoint ((b n)β»ΒΉ β r)) Ξ³ : P + Β¬ P Ξ³ = Ξ΄ d refl pointed-types-aflabby-gives-EM : ((D : π¦ Μ ) β D β aflabby D π¦) β EM π¦ pointed-types-aflabby-gives-EM {π¦} Ξ± P i = aflabby-EM-lemma P i (Ξ± ((P + Β¬ P) + π) (inr β)) EM-gives-pointed-types-ainjective : EM (π€ β π₯) β (D : π¦ Μ ) β D β ainjective-type D π€ π₯ EM-gives-pointed-types-ainjective em D d = aflabby-types-are-ainjective D (EM-gives-pointed-types-aflabby D em d) pointed-types-ainjective-gives-EM : ((D : π¦ Μ ) β D β ainjective-type D π¦ π€) β EM π¦ pointed-types-ainjective-gives-EM Ξ± = pointed-types-aflabby-gives-EM (Ξ» D d β ainjective-types-are-aflabby D (Ξ± D d)) \end{code} End of 6th Feb addition. But this is not the end of the story. What happens with anonymous injectivity (defined and studied below)? TODO. Show that the extension induced by aflabbiness is an embedding of function types. Without resizing axioms, we have the following resizing construction: \begin{code} ainjective-resizingβ : (D : π¦ Μ ) β ainjective-type D (π€ β π£) π₯ β ainjective-type D π€ π£ ainjective-resizingβ D i j e f = aflabby-types-are-ainjective D (ainjective-types-are-aflabby D i) j e f \end{code} In particular: \begin{code} ainjective-resizingβ : (D : π¦ Μ ) β ainjective-type D π€ π₯ β ainjective-type D π€ π€ ainjective-resizingβ = ainjective-resizingβ ainjective-resizingβ : (D : π¦ Μ ) β ainjective-type D π€ π₯ β ainjective-type D π€β π€ ainjective-resizingβ = ainjective-resizingβ \end{code} We also have (added 3rd August 2023): \begin{code} aflabbiness-resizingβ : (D : π¦ Μ ) β aflabby D (π€ β π₯) β aflabby D π€ aflabbiness-resizingβ {π¦} {π€} {π₯} D f = ainjective-types-are-aflabby {π¦} {π€} {π₯} D (aflabby-types-are-ainjective D f) \end{code} Added 24th January 2019. With propositional resizing, as soon as D is aflabby with respect to some universe, it is aflabby with respect to all universes: \begin{code} aflabbiness-resizing : (D : π¦ Μ ) (π€ π₯ : Universe) β propositional-resizing π€ π₯ β aflabby D π₯ β aflabby D π€ aflabbiness-resizing D π€ π₯ R Ο P i f = d , h where Q : π₯ Μ Q = resize R P i j : is-prop Q j = resize-is-prop R P i Ξ± : P β Q Ξ± = to-resize R P i Ξ² : Q β P Ξ² = from-resize R P i d : D d = prβ (Ο Q j (f β Ξ²)) k : (q : Q) β d οΌ f (Ξ² q) k = prβ (Ο Q j (f β Ξ²)) h : (p : P) β d οΌ f p h p = d οΌβ¨ k (Ξ± p) β© f (Ξ² (Ξ± p)) οΌβ¨ ap f (i (Ξ² (Ξ± p)) p) β© f p β \end{code} And from this it follows that the injectivity of a type with respect to two given universes implies its injectivity with respect to all universes: \begin{code} ainjective-resizing : β {π€ π₯ π€' π₯' π¦} β propositional-resizing (π€' β π₯') π€ β (D : π¦ Μ ) β ainjective-type D π€ π₯ β ainjective-type D π€' π₯' ainjective-resizing {π€} {π₯} {π€'} {π₯'} {π¦} R D i j e f = aflabby-types-are-ainjective D (aflabbiness-resizing D (π€' β π₯') π€ R (ainjective-types-are-aflabby D i)) j e f \end{code} As an application of this and of the injectivity of universes, we have that any universe is a retract of any larger universe. We remark that for types that are not sets, sections are not automatically embeddings (Shulman 2015, https://arxiv.org/abs/1507.03634). \begin{code} universe-retract : Univalence β Propositional-resizing β (π€ π₯ : Universe) β Ξ£ Ο κ retract π€ Μ of (π€ β π₯ Μ ), is-embedding (section Ο) universe-retract ua R π€ π₯ = Ο , Lift-is-embedding ua where a : ainjective-type (π€ Μ ) π€ π€ a = universes-are-ainjective-Ξ {π€} {π€} (ua π€) b : is-embedding (Lift π₯) β ainjective-type (π€ Μ ) (π€ βΊ) ((π€ β π₯ )βΊ) β retract π€ Μ of (π€ β π₯ Μ ) b = embedding-retract (π€ Μ ) (π€ β π₯ Μ ) (Lift π₯) Ο : retract π€ Μ of (π€ β π₯ Μ ) Ο = b (Lift-is-embedding ua) (ainjective-resizing R (π€ Μ ) a) \end{code} An unfolding of the above construction is in the module UF.Size. Added 25th January 2019. From this we get the following characterization of injective types (as a logical equivalence, not a type equivalence), which can be read as saying that the injective types in a universe π€ are precisely the retracts of exponential powers of π€. \begin{code} ainjective-characterization : is-univalent π€ β propositional-resizing (π€ βΊ) π€ β (D : π€ Μ ) β ainjective-type D π€ π€ β (Ξ£ X κ π€ Μ , retract D of (X β π€ Μ )) ainjective-characterization {π€} ua R D = a , b where a : ainjective-type D π€ π€ β Ξ£ X κ π€ Μ , retract D of (X β π€ Μ ) a i = D , d where c : ainjective-type D π€ (π€ βΊ) c = ainjective-resizing R D i d : retract D of (D β π€ Μ ) d = ainjective-is-retract-of-power-of-universe D ua c b : (Ξ£ X κ π€ Μ , retract D of (X β π€ Μ )) β ainjective-type D π€ π€ b (X , r) = d where c : ainjective-type (X β π€ Μ ) π€ π€ c = power-of-ainjective (universes-are-ainjective-Ξ£ ua) d : ainjective-type D π€ π€ d = retract-of-ainjective D (X β π€ Μ ) c r \end{code} Added 23rd January 2019: \begin{code} module ainjectivity-of-Lifting (π€ : Universe) where open import Lifting.Construction π€ public open import Lifting.Algebras π€ public open import Lifting.EmbeddingViaSIP π€ public \end{code} The underlying types of algebras of the Lifting monad are aflabby, and hence injective, and so in particular the underlying objects of the free π-algebras are injective. \begin{code} π-alg-aflabby : propext π€ β {A : π₯ Μ } β π-alg A β aflabby A π€ π-alg-aflabby pe (β , ΞΊ , ΞΉ) P i f = β i f , Ξ³ where Ξ³ : (p : P) β β i f οΌ f p Ξ³ p = π-alg-Lawβ-givesβ' pe fe' fe' β ΞΊ P i f p π-alg-ainjective : propext π€ β (A : π₯ Μ ) β π-alg A β ainjective-type A π€ π€ π-alg-ainjective pe A Ξ± = aflabby-types-are-ainjective A (π-alg-aflabby pe Ξ±) free-π-algebra-ainjective : is-univalent π€ β (X : π₯ Μ ) β ainjective-type (π X) π€ π€ free-π-algebra-ainjective ua X = π-alg-ainjective (univalence-gives-propext ua) (π X) (π-algebra-gives-alg (free-π-algebra ua X)) \end{code} Because the unit of the Lifting monad is an embedding, it follows that injective types are retracts of underlying objects of free algebras: \begin{code} ainjective-is-retract-of-free-π-algebra : (D : π€ Μ ) β is-univalent π€ β ainjective-type D π€ (π€ βΊ) β retract D of (π D) ainjective-is-retract-of-free-π-algebra D ua = embedding-retract D (π D) Ξ· (Ξ·-is-embedding' π€ D ua (univalence-gives-funext ua)) \end{code} With propositional resizing, the injective types are precisely the retracts of the underlying objects of free algebras of the Lifting monad: \begin{code} ainjectives-in-terms-of-free-π-algebras : is-univalent π€ β funext π€ (π€ βΊ) β propositional-resizing (π€ βΊ) π€ β (D : π€ Μ ) β ainjective-type D π€ π€ β (Ξ£ X κ π€ Μ , retract D of (π X)) ainjectives-in-terms-of-free-π-algebras ua fe R D = a , b where a : ainjective-type D π€ π€ β Ξ£ X κ π€ Μ , retract D of (π X) a i = D , ainjective-is-retract-of-free-π-algebra D ua (ainjective-resizing R D i) b : (Ξ£ X κ π€ Μ , retract D of (π X)) β ainjective-type D π€ π€ b (X , r) = retract-of-ainjective D (π X) (free-π-algebra-ainjective ua X) r \end{code} Added 21st January 2019. We now consider injectivity as property rather than data. \begin{code} module injective (pt : propositional-truncations-exist) where open PropositionalTruncation pt injective-type : π¦ Μ β (π€ π₯ : Universe) β π€ βΊ β π₯ βΊ β π¦ Μ injective-type D π€ π₯ = {X : π€ Μ } {Y : π₯ Μ } (j : X β Y) β is-embedding j β (f : X β D) β β g κ (Y β D), g β j βΌ f injectivity-is-prop : (D : π¦ Μ ) (π€ π₯ : Universe) β is-prop (injective-type D π€ π₯) injectivity-is-prop {π¦} D π€ π₯ = Ξ -is-prop' (fe (π€ βΊ) (π€ β (π₯ βΊ) β π¦)) (Ξ» X β Ξ -is-prop' (fe (π₯ βΊ) (π€ β π₯ β π¦)) (Ξ» Y β Ξ β-is-prop fe' (Ξ» j e f β β₯β₯-is-prop))) ainjective-gives-injective : (D : π¦ Μ ) β ainjective-type D π€ π₯ β injective-type D π€ π₯ ainjective-gives-injective D i j e f = β£ i j e f β£ β₯ainjectiveβ₯-gives-injective : (D : π¦ Μ ) β β₯ ainjective-type D π€ π₯ β₯ β injective-type D π€ π₯ β₯ainjectiveβ₯-gives-injective {π¦} {π€} {π₯} D = β₯β₯-rec (injectivity-is-prop D π€ π₯) (ainjective-gives-injective D) embedding-β₯retractβ₯ : (D : π¦ Μ ) (Y : π₯ Μ ) (j : D β Y) β is-embedding j β injective-type D π¦ π₯ β β₯ retract D of Y β₯ embedding-β₯retractβ₯ D Y j e i = β₯β₯-functor Ο a where a : β r κ (Y β D), r β j βΌ id a = i j e id Ο : (Ξ£ r κ (Y β D), r β j βΌ id) β Ξ£ r κ (Y β D) , Ξ£ s κ (D β Y), r β s βΌ id Ο (r , p) = r , j , p retract-of-injective : (D' : π€ Μ ) (D : π₯ Μ ) β injective-type D π¦ π£ β retract D' of D β injective-type D' π¦ π£ retract-of-injective D' D i (r , (s , rs)) {X} {Y} j e f = Ξ³ where i' : β f' κ (Y β D), f' β j βΌ s β f i' = i j e (s β f) Ο : (Ξ£ f' κ (Y β D) , f' β j βΌ s β f) β Ξ£ f'' κ (Y β D'), f'' β j βΌ f Ο (f' , h) = r β f' , (Ξ» x β ap r (h x) β rs (f x)) Ξ³ : β f'' κ (Y β D') , f'' β j βΌ f Ξ³ = β₯β₯-functor Ο i' \end{code} The given proof of power-of-ainjective doesn't adapt to the following, so we need a new proof, with new universe assumptions. \begin{code} power-of-injective : {A : π£ Μ } {D : π£ β π¦ Μ } β injective-type D (π€ β π£) (π₯ β π£) β injective-type (A β D) (π€ β π£) (π₯ β π£) power-of-injective {π£} {π¦} {π€} {π₯} {A} {D} i {X} {Y} j e f = Ξ³ where g : X Γ A β D g = uncurry f k : X Γ A β Y Γ A k (x , a) = j x , a c : is-embedding k c = pair-fun-is-embedding j (Ξ» x a β a) e (Ξ» x β id-is-embedding) Ο : β g' κ (Y Γ A β D), g' β k βΌ g Ο = i k c g Ο : (Ξ£ g' κ (Y Γ A β D), g' β k βΌ g) β (Ξ£ f' κ (Y β (A β D)), f' β j βΌ f) Ο (g' , h) = curry g' , (Ξ» x β dfunext (fe π£ (π£ β π¦)) (Ξ» a β h (x , a))) Ξ³ : β f' κ (Y β (A β D)), f' β j βΌ f Ξ³ = β₯β₯-functor Ο Ο injective-β₯retractβ₯-of-power-of-universe : (D : π€ Μ ) β is-univalent π€ β injective-type D π€ (π€ βΊ) β β₯ retract D of (D β π€ Μ ) β₯ injective-β₯retractβ₯-of-power-of-universe {π€} D ua = embedding-β₯retractβ₯ D (D β π€ Μ ) Id (UA-Id-embedding ua fe) injective-gives-β₯ainjectiveβ₯ : is-univalent π€ β (D : π€ Μ ) β injective-type D π€ (π€ βΊ) β β₯ ainjective-type D π€ π€ β₯ injective-gives-β₯ainjectiveβ₯ {π€} ua D i = Ξ³ where Ο : retract D of (D β π€ Μ ) β ainjective-type D π€ π€ Ο = retract-of-ainjective D (D β π€ Μ ) (power-of-ainjective (universes-are-ainjective-Ξ ua)) Ξ³ : β₯ ainjective-type D π€ π€ β₯ Ξ³ = β₯β₯-functor Ο (injective-β₯retractβ₯-of-power-of-universe D ua i) \end{code} So, in summary, regarding the relationship between algebraic injectivity and injectivity, so far we know that β₯ ainjective-type D π€ π₯ β₯ β injective-type D π€ π₯ and injective-type D π€ (π€ βΊ) β β₯ ainjective-type D π€ π€ β₯, and hence, using propositional resizing, we get the following characterization of a particular case of winjectivity in terms of injectivity. \begin{code} injectivity-in-terms-of-ainjectivity' : is-univalent π€ β propositional-resizing (π€ βΊ) π€ β (D : π€ Μ ) β injective-type D π€ (π€ βΊ) β β₯ ainjective-type D π€ (π€ βΊ) β₯ injectivity-in-terms-of-ainjectivity' {π€} ua R D = a , b where a : injective-type D π€ (π€ βΊ) β β₯ ainjective-type D π€ (π€ βΊ) β₯ a = β₯β₯-functor (ainjective-resizing R D) β injective-gives-β₯ainjectiveβ₯ ua D b : β₯ ainjective-type D π€ (π€ βΊ) β₯ β injective-type D π€ (π€ βΊ) b = β₯ainjectiveβ₯-gives-injective D \end{code} What we really would like to have for D : π€ is injective-type D π€ π€ β β₯ ainjective-type D π€ π€ β₯, and, perhaps, more generally, also injective-type D π₯ π¦ β β₯ ainjective-type D π€ π¦ β₯. This is now answered 8th Feb (see below). Added 7th Feb 2019. (Preliminary answer.) However, with Ξ©β-resizing, for a βsetβ D : π€ we do have injective-type D π€ π€ β β₯ ainjective-type D π€ π€ β₯, The reason is that the embedding Id : D β (D β π€) factors through (D β Ξ©β). \begin{code} set-injectivity-in-terms-of-ainjectivity : Ξ©-resizingβ π€ β PropExt β (D : π€ Μ ) (i : is-set D) β injective-type D π€ π€ β β₯ ainjective-type D π€ π€ β₯ set-injectivity-in-terms-of-ainjectivity {π€} (Ξ©β , eβ) pe D i = Ξ³ , β₯ainjectiveβ₯-gives-injective D where down-β : (D β Ξ© π€) β (D β Ξ©β) down-β = βcong' (fe π€ π€β) (fe π€ (π€ βΊ)) (β-sym eβ) down : (D β Ξ© π€) β (D β Ξ©β) down = β down-β β down-is-embedding : is-embedding down down-is-embedding = equivs-are-embeddings down (ββ-is-equiv down-β) Id-setβ : D β (D β Ξ©β) Id-setβ = down β Id-set i Id-setβ-is-embedding : is-embedding Id-setβ Id-setβ-is-embedding = β-is-embedding (Id-set-is-embedding (fe π€ (π€ βΊ)) (pe π€) i) down-is-embedding injective-set-retract-of-powerset : injective-type D π€ π€ β β₯ retract D of (D β Ξ©β) β₯ injective-set-retract-of-powerset = embedding-β₯retractβ₯ D (D β Ξ©β) Id-setβ Id-setβ-is-embedding Ξ©β-injective : ainjective-type Ξ©β π€ π€ Ξ©β-injective = equiv-to-ainjective Ξ©β (Ξ© π€) (Ξ©-ainjective (pe π€)) eβ Ξ³ : injective-type D π€ π€ β β₯ ainjective-type D π€ π€ β₯ Ξ³ j = β₯β₯-functor Ο (injective-set-retract-of-powerset j) where Ο : retract D of (D β Ξ©β) β ainjective-type D π€ π€ Ο = retract-of-ainjective D (D β Ξ©β) (power-of-ainjective Ξ©β-injective) \end{code} Added 8th Feb. Solves a problem formulated above. \begin{code} injectivity-in-terms-of-ainjectivity : Ξ©-resizing π€ β is-univalent π€ β (D : π€ Μ ) β injective-type D π€ π€ β β₯ ainjective-type D π€ π€ β₯ injectivity-in-terms-of-ainjectivity {π€} Οβ ua D = Ξ³ , β₯ainjectiveβ₯-gives-injective D where open import Lifting.Size π€ open ainjectivity-of-Lifting π€ L : π€ Μ L = prβ (π-resizing Οβ D) e : π D β L e = β-sym (prβ (π-resizing Οβ D)) down : π D β L down = β e β down-is-embedding : is-embedding down down-is-embedding = equivs-are-embeddings down (ββ-is-equiv e) Ξ΅ : D β L Ξ΅ = down β Ξ· Ξ΅-is-embedding : is-embedding Ξ΅ Ξ΅-is-embedding = β-is-embedding (Ξ·-is-embedding' π€ D ua (fe π€ π€)) down-is-embedding injective-retract-of-L : injective-type D π€ π€ β β₯ retract D of L β₯ injective-retract-of-L = embedding-β₯retractβ₯ D L Ξ΅ Ξ΅-is-embedding L-injective : ainjective-type L π€ π€ L-injective = equiv-to-ainjective L (π D) (free-π-algebra-ainjective ua D) (β-sym e) Ξ³ : injective-type D π€ π€ β β₯ ainjective-type D π€ π€ β₯ Ξ³ j = β₯β₯-functor Ο (injective-retract-of-L j) where Ο : retract D of L β ainjective-type D π€ π€ Ο = retract-of-ainjective D L L-injective \end{code} Here are some corollaries: \begin{code} injective-resizing : is-univalent π€ β Ξ©-resizing π€ β (D : π€ Μ ) β injective-type D π€ π€ β (π₯ π¦ : Universe) β propositional-resizing (π₯ β π¦) π€ β injective-type D π₯ π¦ injective-resizing {π€} ua Οβ D i π₯ π¦ R = c where a : β₯ ainjective-type D π€ π€ β₯ a = prβ (injectivity-in-terms-of-ainjectivity Οβ ua D) i b : β₯ ainjective-type D π₯ π¦ β₯ b = β₯β₯-functor (ainjective-resizing R D) a c : injective-type D π₯ π¦ c = β₯ainjectiveβ₯-gives-injective D b EM-gives-pointed-types-injective : EM π€ β (D : π€ Μ ) β D β injective-type D π€ π€ EM-gives-pointed-types-injective {π€} em D d = ainjective-gives-injective D (EM-gives-pointed-types-ainjective em D d) pointed-types-injective-gives-EM : Ξ©-resizing π€ β is-univalent π€ β ((D : π€ Μ ) β D β injective-type D π€ π€) β EM π€ pointed-types-injective-gives-EM {π€} Ο ua Ξ² P i = e where a : injective-type ((P + Β¬ P) + π) π€ π€ a = Ξ² ((P + Β¬ P) + π) (inr β) b : β₯ ainjective-type ((P + Β¬ P) + π) π€ π€ β₯ b = prβ (injectivity-in-terms-of-ainjectivity Ο ua ((P + Β¬ P) + π)) a c : β₯ aflabby ((P + Β¬ P) + π) π€ β₯ c = β₯β₯-functor (ainjective-types-are-aflabby ((P + Β¬ P) + π)) b d : β₯ P + Β¬ P β₯ d = β₯β₯-functor (aflabby-EM-lemma P i) c e : P + Β¬ P e = β₯β₯-rec (decidability-of-prop-is-prop (fe π€ π€β) i) id d \end{code} Added 21st October 2024. \begin{code} aflabby-embedding-retract : (D : π€ Μ ) (Y : π₯ Μ ) (j : D β Y) β is-embedding j β aflabby D (π€ β π₯) β retract D of Y aflabby-embedding-retract D Y j e a = embedding-retract D Y j e (aflabby-types-are-ainjective D a) retract-of-aflabby : (D : π€ Μ ) (E : π₯ Μ ) β aflabby D π£ β retract E of D β aflabby E π£ retract-of-aflabby D E D-aflabby (r , s , rs) P P-is-prop f = r d , (Ξ» (p : P) β r d οΌβ¨ ap r (I p) β© r (s (f p)) οΌβ¨ rs (f p) β© f p β) where d : D d = aflabby-extension D-aflabby (P , P-is-prop) (s β f) I : (p : P) β d οΌ s (f p) I = aflabby-extension-property D-aflabby (P , P-is-prop) (s β f) \end{code} Fixities: \begin{code} infixr 4 _βΎ_ \end{code}