Martin Escardo, 2012-
Expanded on demand whenever a general equivalence is needed.
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import MLTT.Plus-Properties
open import MLTT.Spartan
open import MLTT.Two-Properties
open import UF.Base
open import UF.Equiv
open import UF.FunExt
open import UF.Lower-FunExt
open import UF.PropIndexedPiSigma
open import UF.Retracts
open import UF.Subsingletons
open import UF.Subsingletons-FunExt
open import UF.Subsingletons-Properties
module UF.EquivalenceExamples where
curry-uncurry' : funext 𝓤 (𝓥 ⊔ 𝓦)
→ funext (𝓤 ⊔ 𝓥) 𝓦
→ {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {Z : (Σ x ꞉ X , Y x) → 𝓦 ̇ }
→ Π Z ≃ (Π x ꞉ X , Π y ꞉ Y x , Z (x , y))
curry-uncurry' {𝓤} {𝓥} {𝓦} fe fe' {X} {Y} {Z} = qinveq c (u , uc , cu)
where
c : (w : Π Z) → ((x : X) (y : Y x) → Z (x , y))
c f x y = f (x , y)
u : ((x : X) (y : Y x) → Z (x , y)) → Π Z
u g (x , y) = g x y
cu : ∀ g → c (u g) = g
cu g = dfunext fe (λ x → dfunext (lower-funext 𝓤 𝓦 fe') (λ y → refl))
uc : ∀ f → u (c f) = f
uc f = dfunext fe' (λ w → refl)
curry-uncurry : (fe : FunExt)
→ {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {Z : (Σ x ꞉ X , Y x) → 𝓦 ̇ }
→ Π Z ≃ (Π x ꞉ X , Π y ꞉ Y x , Z (x , y))
curry-uncurry {𝓤} {𝓥} {𝓦} fe = curry-uncurry' (fe 𝓤 (𝓥 ⊔ 𝓦)) (fe (𝓤 ⊔ 𝓥) 𝓦)
Σ-=-≃ : {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } {σ τ : Σ A}
→ (σ = τ) ≃ (Σ p ꞉ pr₁ σ = pr₁ τ , transport A p (pr₂ σ) = pr₂ τ)
Σ-=-≃ {𝓤} {𝓥} {X} {A} {x , a} {y , b} = qinveq from-Σ-= (to-Σ-= , ε , η)
where
η : (σ : Σ p ꞉ x = y , transport A p a = b) → from-Σ-= (to-Σ-= σ) = σ
η (refl , refl) = refl
ε : (q : x , a = y , b) → to-Σ-= (from-Σ-= q) = q
ε refl = refl
×-=-≃ : {X : 𝓤 ̇ } {A : 𝓥 ̇ } {σ τ : X × A}
→ (σ = τ) ≃ (pr₁ σ = pr₁ τ) × (pr₂ σ = pr₂ τ)
×-=-≃ {𝓤} {𝓥} {X} {A} {x , a} {y , b} = qinveq from-×-=' (to-×-=' , (ε , η))
where
η : (t : (x = y) × (a = b)) → from-×-=' (to-×-=' t) = t
η (refl , refl) = refl
ε : (u : x , a = y , b) → to-×-=' (from-×-=' u) = u
ε refl = refl
Σ-assoc : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {Z : Σ Y → 𝓦 ̇ }
→ Σ Z ≃ (Σ x ꞉ X , Σ y ꞉ Y x , Z (x , y))
Σ-assoc {𝓤} {𝓥} {𝓦} {X} {Y} {Z} = qinveq c (u , (λ τ → refl) , (λ σ → refl))
where
c : Σ Z → Σ x ꞉ X , Σ y ꞉ Y x , Z (x , y)
c ((x , y) , z) = (x , (y , z))
u : (Σ x ꞉ X , Σ y ꞉ Y x , Z (x , y)) → Σ Z
u (x , (y , z)) = ((x , y) , z)
Σ-flip : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : X → Y → 𝓦 ̇ }
→ (Σ x ꞉ X , Σ y ꞉ Y , A x y) ≃ (Σ y ꞉ Y , Σ x ꞉ X , A x y)
Σ-flip {𝓤} {𝓥} {𝓦} {X} {Y} {A} = qinveq f (g , ε , η)
where
f : (Σ x ꞉ X , Σ y ꞉ Y , A x y) → (Σ y ꞉ Y , Σ x ꞉ X , A x y)
f (x , y , p) = y , x , p
g : (Σ y ꞉ Y , Σ x ꞉ X , A x y) → (Σ x ꞉ X , Σ y ꞉ Y , A x y)
g (y , x , p) = x , y , p
ε : ∀ σ → g (f σ) = σ
ε (x , y , p) = refl
η : ∀ τ → f (g τ) = τ
η (y , x , p) = refl
Σ-interchange : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : X → 𝓦 ̇ } {B : Y → 𝓣 ̇ }
→ (Σ x ꞉ X , Σ y ꞉ Y , A x × B y)
≃ ((Σ x ꞉ X , A x) × (Σ y ꞉ Y , B y))
Σ-interchange {𝓤} {𝓥} {𝓦} {𝓣} {X} {Y} {A} {B} = qinveq f (g , ε , η)
where
f : (Σ x ꞉ X , Σ y ꞉ Y , A x × B y)
→ ((Σ x ꞉ X , A x) × (Σ y ꞉ Y , B y))
f (x , y , a , b) = ((x , a) , (y , b))
g : codomain f → domain f
g ((x , a) , (y , b)) = (x , y , a , b)
ε : ∀ σ → g (f σ) = σ
ε (x , y , a , b) = refl
η : ∀ τ → f (g τ) = τ
η ((x , a) , (y , b)) = refl
Σ-cong : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {Y' : X → 𝓦 ̇ }
→ ((x : X) → Y x ≃ Y' x)
→ Σ Y ≃ Σ Y'
Σ-cong {𝓤} {𝓥} {𝓦} {X} {Y} {Y'} φ = qinveq f (g , gf , fg)
where
f : Σ Y → Σ Y'
f (x , y) = x , ⌜ φ x ⌝ y
g : Σ Y' → Σ Y
g (x , y') = x , ⌜ φ x ⌝⁻¹ y'
fg : (w' : Σ Y') → f (g w') = w'
fg (x , y') = to-Σ-=' (inverses-are-sections ⌜ φ x ⌝ ⌜ φ x ⌝-is-equiv y')
gf : (w : Σ Y) → g (f w) = w
gf (x , y) = to-Σ-=' (inverses-are-retractions ⌜ φ x ⌝ ⌜ φ x ⌝-is-equiv y)
ΠΣ-distr-≃ : {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } {P : (x : X) → A x → 𝓦 ̇ }
→ (Π x ꞉ X , Σ a ꞉ A x , P x a) ≃ (Σ f ꞉ Π A , Π x ꞉ X , P x (f x))
ΠΣ-distr-≃ = qinveq ΠΣ-distr (ΠΣ-distr⁻¹ , (λ _ → refl) , (λ _ → refl))
Π×-distr : {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } {B : X → 𝓦 ̇ }
→ (Π x ꞉ X , A x × B x)
≃ ((Π x ꞉ X , A x) × (Π x ꞉ X , B x))
Π×-distr = ΠΣ-distr-≃
Π×-distr₂ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ }
{A : X → Y → 𝓦 ̇ } {B : X → Y → 𝓣 ̇ }
→ (Π x ꞉ X , Π y ꞉ Y , A x y × B x y)
≃ ((Π x ꞉ X , Π y ꞉ Y , A x y) × (Π x ꞉ X , Π y ꞉ Y , B x y))
Π×-distr₂ = qinveq
(λ f → (λ x y → pr₁ (f x y)) , (λ x y → pr₂ (f x y)))
((λ (g , h) x y → g x y , h x y) ,
(λ _ → refl) ,
(λ _ → refl))
Σ+-distr : (X : 𝓤 ̇ ) (A : X → 𝓥 ̇ ) (B : X → 𝓦 ̇ )
→ (Σ x ꞉ X , A x + B x)
≃ ((Σ x ꞉ X , A x) + (Σ x ꞉ X , B x))
Σ+-distr X A B = qinveq f (g , η , ε)
where
f : (Σ x ꞉ X , A x + B x) → (Σ x ꞉ X , A x) + (Σ x ꞉ X , B x)
f (x , inl a) = inl (x , a)
f (x , inr b) = inr (x , b)
g : ((Σ x ꞉ X , A x) + (Σ x ꞉ X , B x)) → (Σ x ꞉ X , A x + B x)
g (inl (x , a)) = x , inl a
g (inr (x , b)) = x , inr b
η : g ∘ f ∼ id
η (x , inl a) = refl
η (x , inr b) = refl
ε : f ∘ g ∼ id
ε (inl (x , a)) = refl
ε (inr (x , b)) = refl
Σ+-split : (X : 𝓤 ̇ ) (Y : 𝓥 ̇ ) (A : X + Y → 𝓦 ̇ )
→ (Σ x ꞉ X , A (inl x)) + (Σ y ꞉ Y , A (inr y))
≃ (Σ z ꞉ X + Y , A z)
Σ+-split X Y A = qinveq f (g , η , ε)
where
f : (Σ x ꞉ X , A (inl x)) + (Σ y ꞉ Y , A (inr y)) → (Σ z ꞉ X + Y , A z)
f (inl (x , a)) = inl x , a
f (inr (y , a)) = inr y , a
g : (Σ z ꞉ X + Y , A z) → (Σ x ꞉ X , A (inl x)) + (Σ y ꞉ Y , A (inr y))
g (inl x , a) = inl (x , a)
g (inr y , a) = inr (y , a)
η : g ∘ f ∼ id
η (inl _) = refl
η (inr _) = refl
ε : f ∘ g ∼ id
ε (inl _ , _) = refl
ε (inr _ , _) = refl
Π-flip : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : X → Y → 𝓦 ̇ }
→ ((x : X) (y : Y) → A x y) ≃ ((y : Y) (x : X) → A x y)
Π-flip {_} {_} {_} {X} {Y} {A} = qinveq f (g , H , G)
where
f : ((x : X) (y : Y) → A x y) → ((y : Y) (x : X) → A x y)
f h y x = h x y
g : ((y : Y) (x : X) → A x y) → ((x : X) (y : Y) → A x y)
g h x y = h y x
H : (h : ((x : X) (y : Y) → A x y)) → g (f h) = h
H h = refl
G : (h : ((y : Y) (x : X) → A x y)) → f (g h) = h
G h = refl
Π-flip' : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : X → Y → 𝓦 ̇ }
→ ((y : Y) (x : X) → A x y) ≃ ((x : X) (y : Y) → A x y)
Π-flip' = ≃-sym Π-flip
Π-cong : funext 𝓤 𝓥
→ funext 𝓤 𝓦
→ {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {Y' : X → 𝓦 ̇ }
→ ((x : X) → Y x ≃ Y' x)
→ Π Y ≃ Π Y'
Π-cong fe fe' {X} {Y} {Y'} φ = qinveq f (g , gf , fg)
where
f : ((x : X) → Y x) → ((x : X) → Y' x)
f h x = ⌜ φ x ⌝ (h x)
g : ((x : X) → Y' x) → (x : X) → Y x
g k x = ⌜ φ x ⌝⁻¹ (k x)
fg : (k : ((x : X) → Y' x)) → f (g k) = k
fg k = dfunext fe'
(λ x → inverses-are-sections ⌜ φ x ⌝ ⌜ φ x ⌝-is-equiv (k x))
gf : (h : ((x : X) → Y x)) → g (f h) = h
gf h = dfunext fe
(λ x → inverses-are-retractions ⌜ φ x ⌝ ⌜ φ x ⌝-is-equiv (h x))
\end{code}
An application of Π-cong is the following:
\begin{code}
≃-funext₂ : funext 𝓤 (𝓥 ⊔ 𝓦)
→ funext 𝓥 𝓦
→ {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {A : (x : X) → Y x → 𝓦 ̇ }
(f g : (x : X) (y : Y x) → A x y)
→ (f = g) ≃ (∀ x y → f x y = g x y)
≃-funext₂ fe fe' {X} f g =
(f = g) ≃⟨ ≃-funext fe f g ⟩
(f ∼ g) ≃⟨ Π-cong fe fe (λ x → ≃-funext fe' (f x) (g x)) ⟩
(∀ x → f x ∼ g x) ■
𝟙-lneutral : {Y : 𝓤 ̇ } → 𝟙 {𝓥} × Y ≃ Y
𝟙-lneutral {𝓤} {𝓥} {Y} = qinveq f (g , ε , η)
where
f : 𝟙 × Y → Y
f (o , y) = y
g : Y → 𝟙 × Y
g y = (⋆ , y)
η : ∀ x → f (g x) = x
η y = refl
ε : ∀ z → g (f z) = z
ε (o , y) = ap (_, y) (𝟙-is-prop ⋆ o)
×-comm : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → X × Y ≃ Y × X
×-comm {𝓤} {𝓥} {X} {Y} = qinveq f (g , ε , η)
where
f : X × Y → Y × X
f (x , y) = (y , x)
g : Y × X → X × Y
g (y , x) = (x , y)
η : ∀ z → f (g z) = z
η z = refl
ε : ∀ t → g (f t) = t
ε t = refl
𝟙-rneutral : {Y : 𝓤 ̇ } → Y × 𝟙 {𝓥} ≃ Y
𝟙-rneutral {𝓤} {𝓥} {Y} = Y × 𝟙 ≃⟨ ×-comm ⟩
𝟙 × Y ≃⟨ 𝟙-lneutral {𝓤} {𝓥} ⟩
Y ■
+comm : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → X + Y ≃ Y + X
+comm {𝓤} {𝓥} {X} {Y} = qinveq f (g , η , ε)
where
f : X + Y → Y + X
f (inl x) = inr x
f (inr y) = inl y
g : Y + X → X + Y
g (inl y) = inr y
g (inr x) = inl x
ε : (t : Y + X) → (f ∘ g) t = t
ε (inl y) = refl
ε (inr x) = refl
η : (u : X + Y) → (g ∘ f) u = u
η (inl x) = refl
η (inr y) = refl
one-𝟘-only : 𝟘 {𝓤} ≃ 𝟘 {𝓥}
one-𝟘-only = qinveq 𝟘-elim (𝟘-elim , 𝟘-induction , 𝟘-induction)
one-𝟙-only : {𝓤 𝓥 : Universe} → 𝟙 {𝓤} ≃ 𝟙 {𝓥}
one-𝟙-only = qinveq unique-to-𝟙 (unique-to-𝟙 , (λ ⋆ → refl) , (λ ⋆ → refl))
𝟘-rneutral : {X : 𝓤 ̇ } → X ≃ X + 𝟘 {𝓥}
𝟘-rneutral {𝓤} {𝓥} {X} = qinveq f (g , η , ε)
where
f : X → X + 𝟘
f = inl
g : X + 𝟘 → X
g (inl x) = x
g (inr y) = 𝟘-elim y
ε : (y : X + 𝟘) → (f ∘ g) y = y
ε (inl x) = refl
ε (inr y) = 𝟘-elim y
η : (x : X) → (g ∘ f) x = x
η x = refl
𝟘-rneutral' : {X : 𝓤 ̇ } → X + 𝟘 {𝓥} ≃ X
𝟘-rneutral' = ≃-sym 𝟘-rneutral
𝟘-lneutral : {X : 𝓤 ̇ } → 𝟘 {𝓥} + X ≃ X
𝟘-lneutral {𝓤} {𝓥} {X} = (𝟘 + X) ≃⟨ +comm ⟩
(X + 𝟘) ≃⟨ 𝟘-rneutral' {𝓤} {𝓥} ⟩
X ■
𝟘-lneutral' : {X : 𝓤 ̇ } → X ≃ 𝟘 {𝓥} + X
𝟘-lneutral' = ≃-sym 𝟘-lneutral
𝟘-lneutral'' : 𝟙 {𝓤} ≃ 𝟘 {𝓥} + 𝟙 {𝓦}
𝟘-lneutral'' {𝓤} {𝓥} {𝓦} =
𝟙 {𝓤} ≃⟨ one-𝟙-only ⟩
𝟙 {𝓦} ≃⟨ 𝟘-lneutral' ⟩
(𝟘 {𝓥} + 𝟙 {𝓦}) ■
+assoc : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ }
→ (X + Y) + Z ≃ X + (Y + Z)
+assoc {𝓤} {𝓥} {𝓦} {X} {Y} {Z} = qinveq f (g , η , ε)
where
f : (X + Y) + Z → X + (Y + Z)
f (inl (inl x)) = inl x
f (inl (inr y)) = inr (inl y)
f (inr z) = inr (inr z)
g : X + (Y + Z) → (X + Y) + Z
g (inl x) = inl (inl x)
g (inr (inl y)) = inl (inr y)
g (inr (inr z)) = inr z
ε : (t : X + (Y + Z)) → (f ∘ g) t = t
ε (inl x) = refl
ε (inr (inl y)) = refl
ε (inr (inr z)) = refl
η : (u : (X + Y) + Z) → (g ∘ f) u = u
η (inl (inl x)) = refl
η (inl (inr x)) = refl
η (inr x) = refl
+-cong : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : 𝓦 ̇ } {B : 𝓣 ̇ }
→ X ≃ A → Y ≃ B → X + Y ≃ A + B
+-cong f g = qinveq (+functor ⌜ f ⌝ ⌜ g ⌝) (+functor ⌜ f ⌝⁻¹ ⌜ g ⌝⁻¹ , ε , η)
where
ε : +functor ⌜ f ⌝⁻¹ ⌜ g ⌝⁻¹ ∘ +functor ⌜ f ⌝ ⌜ g ⌝ ∼ id
ε (inl x) = ap inl (inverses-are-retractions ⌜ f ⌝ ⌜ f ⌝-is-equiv x)
ε (inr y) = ap inr (inverses-are-retractions ⌜ g ⌝ ⌜ g ⌝-is-equiv y)
η : +functor ⌜ f ⌝ ⌜ g ⌝ ∘ +functor ⌜ f ⌝⁻¹ ⌜ g ⌝⁻¹ ∼ id
η (inl a) = ap inl (inverses-are-sections ⌜ f ⌝ ⌜ f ⌝-is-equiv a)
η (inr b) = ap inr (inverses-are-sections ⌜ g ⌝ ⌜ g ⌝-is-equiv b)
×𝟘 : {X : 𝓤 ̇ } → 𝟘 {𝓥} ≃ X × 𝟘 {𝓦}
×𝟘 {𝓤} {𝓥} {𝓦} {X} = qinveq
unique-from-𝟘
((λ (x , y) → 𝟘-elim y) ,
𝟘-induction ,
(λ (x , y) → 𝟘-elim y))
𝟙distr : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → X × Y + X ≃ X × (Y + 𝟙 {𝓦})
𝟙distr {𝓤} {𝓥} {𝓦} {X} {Y} = qinveq f (g , η , ε)
where
f : X × Y + X → X × (Y + 𝟙)
f (inl (x , y)) = x , inl y
f (inr x) = x , inr ⋆
g : X × (Y + 𝟙) → X × Y + X
g (x , inl y) = inl (x , y)
g (x , inr O) = inr x
ε : f ∘ g ∼ id
ε (x , inl y) = refl
ε (x , inr ⋆) = refl
η : g ∘ f ∼ id
η (inl (x , y)) = refl
η (inr x) = refl
Ap+ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (Z : 𝓦 ̇ ) → X ≃ Y → X + Z ≃ Y + Z
Ap+ {𝓤} {𝓥} {𝓦} {X} {Y} Z f =
qinveq (+functor ⌜ f ⌝ id) (+functor ⌜ f ⌝⁻¹ id , η , ε)
where
η : +functor ⌜ f ⌝⁻¹ id ∘ +functor ⌜ f ⌝ id ∼ id
η (inl x) = ap inl (inverses-are-retractions ⌜ f ⌝ ⌜ f ⌝-is-equiv x)
η (inr z) = ap inr refl
ε : +functor ⌜ f ⌝ id ∘ +functor ⌜ f ⌝⁻¹ id ∼ id
ε (inl x) = ap inl (inverses-are-sections ⌜ f ⌝ ⌜ f ⌝-is-equiv x)
ε (inr z) = ap inr refl
×comm : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → X × Y ≃ Y × X
×comm {𝓤} {𝓥} {X} {Y} = qinveq
(λ (x , y) → (y , x))
((λ (y , x) → (x , y)) ,
(λ _ → refl) ,
(λ _ → refl))
×-cong : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : 𝓦 ̇ } {B : 𝓣 ̇ }
→ X ≃ A → Y ≃ B → X × Y ≃ A × B
×-cong f g = qinveq (×functor ⌜ f ⌝ ⌜ g ⌝) (×functor ⌜ f ⌝⁻¹ ⌜ g ⌝⁻¹ , ε , η)
where
ε : ×functor ⌜ f ⌝⁻¹ ⌜ g ⌝⁻¹ ∘ ×functor ⌜ f ⌝ ⌜ g ⌝ ∼ id
ε (x , y) = to-×-=
(inverses-are-retractions ⌜ f ⌝ ⌜ f ⌝-is-equiv x)
(inverses-are-retractions ⌜ g ⌝ ⌜ g ⌝-is-equiv y)
η : ×functor ⌜ f ⌝ ⌜ g ⌝ ∘ ×functor ⌜ f ⌝⁻¹ ⌜ g ⌝⁻¹ ∼ id
η (a , b) = to-×-=
(inverses-are-sections ⌜ f ⌝ ⌜ f ⌝-is-equiv a)
(inverses-are-sections ⌜ g ⌝ ⌜ g ⌝-is-equiv b)
𝟘→ : {X : 𝓤 ̇ }
→ funext 𝓦 𝓤
→ 𝟙 {𝓥} ≃ (𝟘 {𝓦} → X)
𝟘→ {𝓤} {𝓥} {𝓦} {X} fe = qinveq f (g , η , ε)
where
f : 𝟙 → (𝟘 → X)
f ⋆ y = 𝟘-elim y
g : (𝟘 → X) → 𝟙
g h = ⋆
ε : f ∘ g ∼ id
ε h = dfunext fe (λ z → 𝟘-elim z)
η : g ∘ f ∼ id
η ⋆ = refl
𝟙→ : {X : 𝓤 ̇ }
→ funext 𝓥 𝓤
→ X ≃ (𝟙 {𝓥} → X)
𝟙→ {𝓤} {𝓥} {X} fe = qinveq f (g , η , ε)
where
f : X → 𝟙 → X
f x ⋆ = x
g : (𝟙 → X) → X
g h = h ⋆
ε : (h : 𝟙 → X) → f (g h) = h
ε h = dfunext fe γ
where
γ : (t : 𝟙) → f (g h) t = h t
γ ⋆ = refl
η : (x : X) → g (f x) = x
η x = refl
→𝟙 : {X : 𝓤 ̇ } → funext 𝓤 𝓥
→ (X → 𝟙 {𝓥}) ≃ 𝟙 {𝓥}
→𝟙 {𝓤} {𝓥} {X} fe = qinveq f (g , ε , η)
where
f : (X → 𝟙) → 𝟙
f = unique-to-𝟙
g : (t : 𝟙) → X → 𝟙
g t = unique-to-𝟙
ε : (α : X → 𝟙) → g ⋆ = α
ε α = dfunext fe λ (x : X) → 𝟙-is-prop (g ⋆ x) (α x)
η : (t : 𝟙) → ⋆ = t
η = 𝟙-is-prop ⋆
Π×+ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : X + Y → 𝓦 ̇ } → funext (𝓤 ⊔ 𝓥) 𝓦
→ (Π x ꞉ X , A (inl x)) × (Π y ꞉ Y , A (inr y))
≃ (Π z ꞉ X + Y , A z)
Π×+ {𝓤} {𝓥} {𝓦} {X} {Y} {A} fe = qinveq f (g , ε , η)
where
f : (Π x ꞉ X , A (inl x)) × (Π y ꞉ Y , A (inr y)) → (Π z ꞉ X + Y , A z)
f (l , r) (inl x) = l x
f (l , r) (inr y) = r y
g : (Π z ꞉ X + Y , A z) → (Π x ꞉ X , A (inl x)) × (Π y ꞉ Y , A (inr y))
g h = h ∘ inl , h ∘ inr
η : f ∘ g ∼ id
η h = dfunext fe γ
where
γ : (z : X + Y) → (f ∘ g) h z = h z
γ (inl x) = refl
γ (inr y) = refl
ε : g ∘ f ∼ id
ε (l , r) = refl
+→ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ }
→ funext (𝓤 ⊔ 𝓥) 𝓦
→ (X + Y → Z) ≃ (X → Z) × (Y → Z)
+→ fe = ≃-sym (Π×+ fe)
→× : {A : 𝓤 ̇ } {X : A → 𝓥 ̇ } {Y : A → 𝓦 ̇ }
→ ((a : A) → X a × Y a) ≃ Π X × Π Y
→× {𝓤} {𝓥} {𝓦} {A} {X} {Y} = qinveq f (g , ε , η)
where
f : ((a : A) → X a × Y a) → Π X × Π Y
f φ = (λ a → pr₁ (φ a)) , (λ a → pr₂ (φ a))
g : Π X × Π Y → (a : A) → X a × Y a
g (γ , δ) a = γ a , δ a
ε : (φ : (a : A) → X a × Y a) → g (f φ) = φ
ε φ = refl
η : (α : Π X × Π Y) → f (g α) = α
η (γ , δ) = refl
→cong : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : 𝓦 ̇ } {B : 𝓣 ̇ }
→ funext 𝓦 𝓣
→ funext 𝓤 𝓥
→ X ≃ A → Y ≃ B → (X → Y) ≃ (A → B)
→cong {𝓤} {𝓥} {𝓦} {𝓣} {X} {Y} {A} {B} fe fe' f g =
qinveq ϕ (γ , ((λ h → dfunext fe' (η h)) , (λ k → dfunext fe (ε k))))
where
ϕ : (X → Y) → (A → B)
ϕ h = ⌜ g ⌝ ∘ h ∘ ⌜ f ⌝⁻¹
γ : (A → B) → (X → Y)
γ k = ⌜ g ⌝⁻¹ ∘ k ∘ ⌜ f ⌝
ε : (k : A → B) → ϕ (γ k) ∼ k
ε k a = ⌜ g ⌝ (⌜ g ⌝⁻¹ (k (⌜ f ⌝ (⌜ f ⌝⁻¹ a)))) =⟨ I ⟩
k (⌜ f ⌝ (⌜ f ⌝⁻¹ a)) =⟨ II ⟩
k a ∎
where
I = inverses-are-sections ⌜ g ⌝ ⌜ g ⌝-is-equiv _
II = ap k (inverses-are-sections ⌜ f ⌝ ⌜ f ⌝-is-equiv a)
η : (h : X → Y) → γ (ϕ h) ∼ h
η h x = ⌜ g ⌝⁻¹ (⌜ g ⌝ (h (⌜ f ⌝⁻¹ (⌜ f ⌝ x)))) =⟨ I ⟩
h (⌜ f ⌝⁻¹ (⌜ f ⌝ x)) =⟨ II ⟩
h x ∎
where
I = inverses-are-retractions ⌜ g ⌝ ⌜ g ⌝-is-equiv _
II = ap h (inverses-are-retractions ⌜ f ⌝ ⌜ f ⌝-is-equiv x)
→cong' : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {B : 𝓣 ̇ }
→ funext 𝓤 𝓣
→ funext 𝓤 𝓥
→ Y ≃ B → (X → Y) ≃ (X → B)
→cong' fe fe' = →cong fe fe' (≃-refl _)
→cong'' : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : 𝓦 ̇ }
→ funext 𝓦 𝓥
→ funext 𝓤 𝓥
→ X ≃ A → (X → Y) ≃ (A → Y)
→cong'' fe fe' e = →cong fe fe' e (≃-refl _)
pr₁-≃ : (X : 𝓤 ̇ ) (A : X → 𝓥 ̇ )
→ ((x : X) → is-singleton (A x))
→ (Σ x ꞉ X , A x) ≃ X
pr₁-≃ X A f = pr₁ , pr₁-is-equiv X A f
NatΣ-fiber-equiv : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) (B : X → 𝓦 ̇ ) (ζ : Nat A B)
→ (x : X) (b : B x) → fiber (ζ x) b ≃ fiber (NatΣ ζ) (x , b)
NatΣ-fiber-equiv A B ζ x b = qinveq (f b) (g b , ε b , η b)
where
f : (b : B x) → fiber (ζ x) b → fiber (NatΣ ζ) (x , b)
f _ (a , refl) = (x , a) , refl
g : (b : B x) → fiber (NatΣ ζ) (x , b) → fiber (ζ x) b
g _ ((x , a) , refl) = a , refl
ε : (b : B x) (w : fiber (ζ x) b) → g b (f b w) = w
ε _ (a , refl) = refl
η : (b : B x) (t : fiber (NatΣ ζ) (x , b)) → f b (g b t) = t
η b (a , refl) = refl
NatΣ-vv-equiv : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) (B : X → 𝓦 ̇ ) (ζ : Nat A B)
→ ((x : X) → is-vv-equiv (ζ x))
→ is-vv-equiv (NatΣ ζ)
NatΣ-vv-equiv A B ζ i (x , b) = equiv-to-singleton
(≃-sym (NatΣ-fiber-equiv A B ζ x b))
(i x b)
NatΣ-vv-equiv-converse : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) (B : X → 𝓦 ̇ ) (ζ : Nat A B)
→ is-vv-equiv (NatΣ ζ)
→ ((x : X) → is-vv-equiv (ζ x))
NatΣ-vv-equiv-converse A B ζ e x b = equiv-to-singleton
(NatΣ-fiber-equiv A B ζ x b)
(e (x , b))
NatΣ-is-equiv : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) (B : X → 𝓦 ̇ ) (ζ : Nat A B)
→ ((x : X) → is-equiv (ζ x))
→ is-equiv (NatΣ ζ)
NatΣ-is-equiv A B ζ i = vv-equivs-are-equivs
(NatΣ ζ)
(NatΣ-vv-equiv A B ζ
(λ x → equivs-are-vv-equivs (ζ x) (i x)))
NatΣ-equiv-converse : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) (B : X → 𝓦 ̇ ) (ζ : Nat A B)
→ is-equiv (NatΣ ζ)
→ ((x : X) → is-equiv (ζ x))
NatΣ-equiv-converse A B ζ e x = vv-equivs-are-equivs (ζ x)
(NatΣ-vv-equiv-converse A B ζ
(equivs-are-vv-equivs (NatΣ ζ) e) x)
NatΣ-equiv-gives-fiberwise-equiv : {X : 𝓤 ̇ } {A : X → 𝓥 ̇ } {B : X → 𝓦 ̇ }
(φ : Nat A B)
→ is-equiv (NatΣ φ)
→ is-fiberwise-equiv φ
NatΣ-equiv-gives-fiberwise-equiv = NatΣ-equiv-converse _ _
Σ-cong' : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) (B : X → 𝓦 ̇ )
→ ((x : X) → A x ≃ B x) → Σ A ≃ Σ B
Σ-cong' A B f = NatΣ (λ x → ⌜ f x ⌝) ,
NatΣ-is-equiv A B (λ x → ⌜ f x ⌝) (λ x → ⌜ f x ⌝-is-equiv)
Σ-change-of-variable' : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (A : X → 𝓦 ̇ ) (g : Y → X)
→ is-hae g
→ Σ γ ꞉ ((Σ y ꞉ Y , A (g y)) → Σ A) , qinv γ
Σ-change-of-variable' {𝓤} {𝓥} {𝓦} {X} {Y} A g (f , η , ε , α) = γ , φ , φγ , γφ
where
γ : (Σ y ꞉ Y , A (g y)) → Σ A
γ (y , a) = (g y , a)
φ : Σ A → Σ y ꞉ Y , A (g y)
φ (x , a) = (f x , transport⁻¹ A (ε x) a)
γφ : (σ : Σ A) → γ (φ σ) = σ
γφ (x , a) = to-Σ-= (ε x , p)
where
p : transport A (ε x) (transport⁻¹ A (ε x) a) = a
p = back-and-forth-transport (ε x)
φγ : (τ : (Σ y ꞉ Y , A (g y))) → φ (γ τ) = τ
φγ (y , a) = to-Σ-= (η y , q)
where
q = transport (λ - → A (g -)) (η y) (transport⁻¹ A (ε (g y)) a) =⟨ i ⟩
transport A (ap g (η y)) (transport⁻¹ A (ε (g y)) a) =⟨ ii ⟩
transport A (ε (g y)) (transport⁻¹ A (ε (g y)) a) =⟨ iii ⟩
a ∎
where
i = transport-ap A g (η y)
ii = ap (λ - → transport A - (transport⁻¹ A (ε (g y)) a)) (α y)
iii = back-and-forth-transport (ε (g y))
Σ-change-of-variable : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (A : X → 𝓦 ̇ ) (g : Y → X)
→ is-equiv g
→ (Σ y ꞉ Y , A (g y)) ≃ (Σ x ꞉ X , A x)
Σ-change-of-variable {𝓤} {𝓥} {𝓦} {X} {Y} A g e = γ , qinvs-are-equivs γ q
where
γ : (Σ y ꞉ Y , A (g y)) → Σ A
γ = pr₁ (Σ-change-of-variable' A g (equivs-are-haes g e))
q : qinv γ
q = pr₂ (Σ-change-of-variable' A g (equivs-are-haes g e))
Σ-change-of-variable-≃ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (A : X → 𝓦 ̇ ) (e : Y ≃ X)
→ (Σ y ꞉ Y , A (⌜ e ⌝ y)) ≃ (Σ x ꞉ X , A x)
Σ-change-of-variable-≃ A (g , i) = Σ-change-of-variable A g i
Σ-bicong : {X : 𝓤 ̇ } (Y : X → 𝓥 ̇ )
{X' : 𝓤' ̇ } (Y' : X' → 𝓥' ̇ )
(𝕗 : X ≃ X')
→ ((x : X) → Y x ≃ Y' (⌜ 𝕗 ⌝ x))
→ Σ Y ≃ Σ Y'
Σ-bicong {𝓤} {𝓥} {𝓤'} {𝓥'} {X} Y {X'} Y' 𝕗 φ =
Σ Y ≃⟨ Σ-cong φ ⟩
(Σ x ꞉ X , Y' (⌜ 𝕗 ⌝ x)) ≃⟨ Σ-change-of-variable-≃ Y' 𝕗 ⟩
Σ Y' ■
dprecomp : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (A : Y → 𝓦 ̇ ) (f : X → Y)
→ Π A → Π (A ∘ f)
dprecomp A f = _∘ f
dprecomp-is-equiv : funext 𝓤 𝓦
→ funext 𝓥 𝓦
→ {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (A : Y → 𝓦 ̇ ) (f : X → Y)
→ is-equiv f
→ is-equiv (dprecomp A f)
dprecomp-is-equiv fe fe' {X} {Y} A f i = qinvs-are-equivs φ ((ψ , ψφ , φψ))
where
g = inverse f i
η = inverses-are-retractions f i
ε = inverses-are-sections f i
τ : (x : X) → ap f (η x) = ε (f x)
τ = half-adjoint-condition f i
φ : Π A → Π (A ∘ f)
φ = dprecomp A f
ψ : Π (A ∘ f) → Π A
ψ k y = transport A (ε y) (k (g y))
φψ₀ : (k : Π (A ∘ f)) (x : X) → transport A (ε (f x)) (k (g (f x))) = k x
φψ₀ k x = transport A (ε (f x)) (k (g (f x))) =⟨ a ⟩
transport A (ap f (η x))(k (g (f x))) =⟨ b ⟩
transport (A ∘ f) (η x) (k (g (f x))) =⟨ c ⟩
k x ∎
where
a = ap (λ - → transport A - (k (g (f x)))) ((τ x)⁻¹)
b = (transport-ap A f (η x)) ⁻¹
c = apd k (η x)
φψ : φ ∘ ψ ∼ id
φψ k = dfunext fe (φψ₀ k)
ψφ₀ : (h : Π A) (y : Y) → transport A (ε y) (h (f (g y))) = h y
ψφ₀ h y = apd h (ε y)
ψφ : ψ ∘ φ ∼ id
ψφ h = dfunext fe' (ψφ₀ h)
Π-change-of-variable : funext 𝓤 𝓦
→ funext 𝓥 𝓦
→ {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (A : Y → 𝓦 ̇ ) (f : X → Y)
→ is-equiv f
→ (Π y ꞉ Y , A y) ≃ (Π x ꞉ X , A (f x))
Π-change-of-variable fe fe' A f i = dprecomp A f , dprecomp-is-equiv fe fe' A f i
Π-change-of-variable-≃ : FunExt
→ {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (A : Y → 𝓦 ̇ ) (𝕗 : X ≃ Y)
→ (Π x ꞉ X , A (⌜ 𝕗 ⌝ x)) ≃ (Π y ꞉ Y , A y)
Π-change-of-variable-≃ fe A (f , i) =
≃-sym (Π-change-of-variable (fe _ _) (fe _ _) A f i)
Π-bicong : FunExt
→ {X : 𝓤 ̇ } (Y : X → 𝓥 ̇ )
{X' : 𝓤' ̇ } (Y' : X' → 𝓥' ̇ )
(𝕗 : X ≃ X')
→ ((x : X) → Y x ≃ Y' (⌜ 𝕗 ⌝ x))
→ Π Y ≃ Π Y'
Π-bicong {𝓤} {𝓥} {𝓤'} {𝓥'} fe {X} Y {X'} Y' 𝕗 φ =
Π Y ≃⟨ Π-cong (fe 𝓤 𝓥) (fe 𝓤 𝓥') φ ⟩
(Π x ꞉ X , Y' (⌜ 𝕗 ⌝ x)) ≃⟨ Π-change-of-variable-≃ fe Y' 𝕗 ⟩
Π Y' ■
NatΠ-fiber-equiv : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) (B : X → 𝓦 ̇ ) (ζ : Nat A B)
→ funext 𝓤 𝓦
→ (g : Π B)
→ (Π x ꞉ X , fiber (ζ x) (g x)) ≃ fiber (NatΠ ζ) g
NatΠ-fiber-equiv {𝓤} {𝓥} {𝓦} {X} A B ζ fe g =
(Π x ꞉ X , fiber (ζ x) (g x)) ≃⟨ i ⟩
(Π x ꞉ X , Σ a ꞉ A x , ζ x a = g x) ≃⟨ ii ⟩
(Σ f ꞉ Π A , Π x ꞉ X , ζ x (f x) = g x) ≃⟨ iii ⟩
(Σ f ꞉ Π A , (λ x → ζ x (f x)) = g) ≃⟨ iv ⟩
fiber (NatΠ ζ) g ■
where
i = ≃-refl _
ii = ΠΣ-distr-≃
iii = Σ-cong (λ f → ≃-sym (≃-funext fe (λ x → ζ x (f x)) g))
iv = ≃-refl _
NatΠ-vv-equiv : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) (B : X → 𝓦 ̇ ) (ζ : Nat A B)
→ funext 𝓤 (𝓥 ⊔ 𝓦)
→ ((x : X) → is-vv-equiv (ζ x))
→ is-vv-equiv (NatΠ ζ)
NatΠ-vv-equiv {𝓤} {𝓥} {𝓦} A B ζ fe i g = equiv-to-singleton
(≃-sym (NatΠ-fiber-equiv A B ζ
(lower-funext 𝓤 𝓥 fe) g))
(Π-is-singleton fe (λ x → i x (g x)))
NatΠ-equiv : {X : 𝓤 ̇ } (A : X → 𝓥 ̇ ) (B : X → 𝓦 ̇ ) (ζ : Nat A B)
→ funext 𝓤 (𝓥 ⊔ 𝓦)
→ ((x : X) → is-equiv (ζ x))
→ is-equiv (NatΠ ζ)
NatΠ-equiv A B ζ fe i = vv-equivs-are-equivs
(NatΠ ζ)
(NatΠ-vv-equiv A B ζ fe
(λ x → equivs-are-vv-equivs (ζ x) (i x)))
Π-cong' : {X : 𝓤 ̇ }
→ funext 𝓤 (𝓥 ⊔ 𝓦)
→ {A : X → 𝓥 ̇ } {B : X → 𝓦 ̇ }
→ ((x : X) → A x ≃ B x)
→ Π A ≃ Π B
Π-cong' fe {A} {B} e = NatΠ (λ x → pr₁ (e x)) ,
NatΠ-equiv A B (λ x → pr₁ (e x)) fe (λ x → pr₂ (e x))
=-cong : {X : 𝓤 ̇ } (x y : X) {x' y' : X}
→ x = x'
→ y = y'
→ (x = y) ≃ (x' = y')
=-cong x y refl refl = ≃-refl (x = y)
=-cong-l : {X : 𝓤 ̇ } (x y : X) {x' : X}
→ x = x'
→ (x = y) ≃ (x' = y)
=-cong-l x y refl = ≃-refl (x = y)
=-cong-r : {X : 𝓤 ̇ } (x y : X) {y' : X}
→ y = y'
→ (x = y) ≃ (x = y')
=-cong-r x y refl = ≃-refl (x = y)
=-flip : {X : 𝓤 ̇ } {x y : X}
→ (x = y) ≃ (y = x)
=-flip = _⁻¹ , (_⁻¹ , ⁻¹-involutive) , (_⁻¹ , ⁻¹-involutive)
singleton-≃ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ }
→ is-singleton X
→ is-singleton Y
→ X ≃ Y
singleton-≃ i j = (λ _ → center j) , maps-of-singletons-are-equivs _ i j
singleton-≃-𝟙 : {X : 𝓤 ̇ } → is-singleton X → X ≃ 𝟙 {𝓥}
singleton-≃-𝟙 i = singleton-≃ i 𝟙-is-singleton
singleton-≃-𝟙' : {X : 𝓤 ̇ } → is-singleton X → 𝟙 {𝓥} ≃ X
singleton-≃-𝟙' = singleton-≃ 𝟙-is-singleton
𝟙-=-≃ : (P : 𝓤 ̇ )
→ funext 𝓤 𝓤
→ propext 𝓤
→ is-prop P
→ (𝟙 = P) ≃ P
𝟙-=-≃ P fe pe i = qinveq (λ q → Idtofun q ⋆) (f , ε , η)
where
f : P → 𝟙 = P
f p = pe 𝟙-is-prop i (λ _ → p) unique-to-𝟙
η : (p : P) → Idtofun (f p) ⋆ = p
η p = i (Idtofun (f p) ⋆) p
ε : (q : 𝟙 = P) → f (Idtofun q ⋆) = q
ε q = identifications-with-props-are-props pe fe P i 𝟙 (f (Idtofun q ⋆)) q
empty-≃-𝟘 : {X : 𝓤 ̇ } → (X → 𝟘 {𝓥}) → X ≃ 𝟘 {𝓦}
empty-≃-𝟘 i = qinveq
(𝟘-elim ∘ i)
(𝟘-elim ,
(λ x → 𝟘-elim (i x)) ,
(λ x → 𝟘-elim x))
complement-is-equiv : is-equiv complement
complement-is-equiv = qinvs-are-equivs
complement
(complement ,
complement-involutive ,
complement-involutive)
complement-≃ : 𝟚 ≃ 𝟚
complement-≃ = (complement , complement-is-equiv)
𝟚-≃-𝟙+𝟙 : 𝟚 ≃ 𝟙{𝓤} + 𝟙{𝓤}
𝟚-≃-𝟙+𝟙 = f , qinvs-are-equivs f (g , gf , fg)
where
f : 𝟚 → 𝟙 + 𝟙
f = 𝟚-cases (inl ⋆) (inr ⋆)
g : 𝟙 + 𝟙 → 𝟚
g = cases (λ x → ₀) (λ x → ₁)
fg : (x : 𝟙 + 𝟙) → f (g x) = x
fg (inl ⋆) = refl
fg (inr ⋆) = refl
gf : (x : 𝟚) → g (f x) = x
gf ₀ = refl
gf ₁ = refl
alternative-× : funext 𝓤₀ 𝓤
→ {A : 𝟚 → 𝓤 ̇ }
→ (Π n ꞉ 𝟚 , A n) ≃ (A ₀ × A ₁)
alternative-× fe {A} = qinveq ϕ (ψ , η , ε)
where
ϕ : (Π n ꞉ 𝟚 , A n) → A ₀ × A ₁
ϕ f = (f ₀ , f ₁)
ψ : A ₀ × A ₁ → Π n ꞉ 𝟚 , A n
ψ (a₀ , a₁) ₀ = a₀
ψ (a₀ , a₁) ₁ = a₁
η : ψ ∘ ϕ ∼ id
η f = dfunext fe (λ {₀ → refl ; ₁ → refl})
ε : ϕ ∘ ψ ∼ id
ε (a₀ , a₁) = refl
alternative-+ : {A : 𝟚 → 𝓤 ̇ }
→ (Σ n ꞉ 𝟚 , A n) ≃ (A ₀ + A ₁)
alternative-+ {𝓤} {A} = qinveq ϕ (ψ , η , ε)
where
ϕ : (Σ n ꞉ 𝟚 , A n) → A ₀ + A ₁
ϕ (₀ , a) = inl a
ϕ (₁ , a) = inr a
ψ : A ₀ + A ₁ → Σ n ꞉ 𝟚 , A n
ψ (inl a) = ₀ , a
ψ (inr a) = ₁ , a
η : ψ ∘ ϕ ∼ id
η (₀ , a) = refl
η (₁ , a) = refl
ε : ϕ ∘ ψ ∼ id
ε (inl a) = refl
ε (inr a) = refl
domain-is-total-fiber : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → X ≃ Σ (fiber f)
domain-is-total-fiber {𝓤} {𝓥} {X} {Y} f =
X ≃⟨ ≃-sym (𝟙-rneutral {𝓤} {𝓤}) ⟩
X × 𝟙 ≃⟨ I ⟩
(Σ x ꞉ X , Σ y ꞉ Y , f x = y) ≃⟨ Σ-flip ⟩
(Σ y ꞉ Y , Σ x ꞉ X , f x = y) ■
where
I = Σ-cong
(λ x → singleton-≃ 𝟙-is-singleton
(singleton-types-are-singletons (f x)))
total-fiber-is-domain : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y)
→ (Σ y ꞉ Y , Σ x ꞉ X , f x = y) ≃ X
total-fiber-is-domain {𝓤} {𝓥} {X} {Y} f = ≃-sym (domain-is-total-fiber f)
left-Id-equiv : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } (x : X)
→ (Σ x' ꞉ X , (x' = x) × Y x') ≃ Y x
left-Id-equiv {𝓤} {𝓥} {X} {Y} x =
(Σ x' ꞉ X , (x' = x) × Y x') ≃⟨ ≃-sym Σ-assoc ⟩
(Σ (x' , _) ꞉ singleton-type' x , Y x') ≃⟨ a ⟩
Y x ■
where
a = prop-indexed-sum (singleton'-center x) (singleton-types'-are-props x)
right-Id-equiv : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } (x : X)
→ (Σ x' ꞉ X , Y x' × (x' = x)) ≃ Y x
right-Id-equiv {𝓤} {𝓥} {X} {Y} x =
(Σ x' ꞉ X , Y x' × (x' = x)) ≃⟨ Σ-cong (λ x' → ×-comm) ⟩
(Σ x' ꞉ X , (x' = x) × Y x') ≃⟨ left-Id-equiv x ⟩
Y x ■
pr₁-fiber-equiv : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } (x : X)
→ fiber (pr₁ {𝓤} {𝓥} {X} {Y}) x ≃ Y x
pr₁-fiber-equiv {𝓤} {𝓥} {X} {Y} x =
fiber pr₁ x ≃⟨ Σ-assoc ⟩
(Σ x' ꞉ X , Y x' × (x' = x)) ≃⟨ right-Id-equiv x ⟩
Y x ■
\end{code}
Tom de Jong, September 2019 (two lemmas used in UF.Classifiers-Old)
A nice application of Σ-change-of-variable is that the fiber of a map doesn't
change (up to equivalence, at least) when precomposing with an equivalence.
These two lemmas are used in UF.Classifiers-Old, but are sufficiently general to
warrant their place here.
\begin{code}
precomposition-with-equiv-does-not-change-fibers
: {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ }
(e : Z ≃ X) (f : X → Y) (y : Y)
→ fiber (f ∘ ⌜ e ⌝) y ≃ fiber f y
precomposition-with-equiv-does-not-change-fibers (g , i) f y =
Σ-change-of-variable (λ - → f - = y) g i
retract-pointed-fibers : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {r : Y → X}
→ has-section r ≃ (Π x ꞉ X , fiber r x)
retract-pointed-fibers {𝓤} {𝓥} {X} {Y} {r} = qinveq f (g , (p , q))
where
f : (Σ s ꞉ (X → Y) , r ∘ s ∼ id) → Π (fiber r)
f (s , rs) x = (s x) , (rs x)
g : ((x : X) → fiber r x) → Σ s ꞉ (X → Y) , r ∘ s ∼ id
g α = (λ (x : X) → pr₁ (α x)) , (λ (x : X) → pr₂ (α x))
p : (srs : Σ s ꞉ (X → Y) , r ∘ s ∼ id) → g (f srs) = srs
p (s , rs) = refl
q : (α : Π x ꞉ X , fiber r x) → f (g α) = α
q α = refl
\end{code}
Added 10 February 2020 by Tom de Jong.
\begin{code}
fiber-of-composite : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {Z : 𝓦 ̇ } (f : X → Y) (g : Y → Z)
→ (z : Z)
→ fiber (g ∘ f) z
≃ (Σ (y , _) ꞉ fiber g z , fiber f y)
fiber-of-composite {𝓤} {𝓥} {𝓦} {X} {Y} {Z} f g z =
qinveq ϕ (ψ , (ψϕ , ϕψ))
where
ϕ : fiber (g ∘ f) z
→ (Σ w ꞉ (fiber g z) , fiber f (fiber-point w))
ϕ (x , p) = ((f x) , p) , (x , refl)
ψ : (Σ w ꞉ (fiber g z) , fiber f (fiber-point w))
→ fiber (g ∘ f) z
ψ ((y , q) , (x , p)) = x , ((ap g p) ∙ q)
ψϕ : (w : fiber (g ∘ f) z) → ψ (ϕ w) = w
ψϕ (x , refl) = refl
ϕψ : (w : Σ w ꞉ (fiber g z) , fiber f (fiber-point w))
→ ϕ (ψ w) = w
ϕψ ((.(f x) , refl) , (x , refl)) = refl
fiber-of-unique-to-𝟙 : {𝓥 : Universe} {X : 𝓤 ̇ }
→ (u : 𝟙)
→ fiber (unique-to-𝟙 {_} {𝓥} {X}) u ≃ X
fiber-of-unique-to-𝟙 {𝓤} {𝓥} {X} ⋆ =
(Σ x ꞉ X , unique-to-𝟙 x = ⋆) ≃⟨ Σ-cong ψ ⟩
X × 𝟙{𝓥} ≃⟨ 𝟙-rneutral ⟩
X ■
where
ψ : (x : X) → (⋆ = ⋆) ≃ 𝟙
ψ x = singleton-≃-𝟙
(pointed-props-are-singletons refl (props-are-sets 𝟙-is-prop))
∼-fiber-identifications-≃ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {f : X → Y} {g : X → Y}
→ f ∼ g
→ (y : Y) (x : X)
→ (f x = y) ≃ (g x = y)
∼-fiber-identifications-≃ {𝓤} {𝓥} {X} {Y} {f} {g} H y x = qinveq α (β , (βα , αβ))
where
α : f x = y → g x = y
α p = (H x) ⁻¹ ∙ p
β : g x = y → f x = y
β q = (H x) ∙ q
βα : (p : f x = y) → β (α p) = p
βα p = β (α p) =⟨ refl ⟩
(H x) ∙ ((H x) ⁻¹ ∙ p) =⟨ (∙assoc (H x) ((H x) ⁻¹) p) ⁻¹ ⟩
(H x) ∙ (H x) ⁻¹ ∙ p =⟨ ap (λ - → - ∙ p) ((right-inverse (H x)) ⁻¹) ⟩
refl ∙ p =⟨ refl-left-neutral ⟩
p ∎
αβ : (q : g x = y) → α (β q) = q
αβ q = α (β q) =⟨ refl ⟩
(H x) ⁻¹ ∙ ((H x) ∙ q) =⟨ (∙assoc ((H x) ⁻¹) (H x) q) ⁻¹ ⟩
(H x) ⁻¹ ∙ (H x) ∙ q =⟨ ap (λ - → - ∙ q) (left-inverse (H x)) ⟩
refl ∙ q =⟨ refl-left-neutral ⟩
q ∎
∼-fiber-≃ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {f : X → Y} {g : X → Y}
→ f ∼ g
→ (y : Y) → fiber f y ≃ fiber g y
∼-fiber-≃ H y = Σ-cong (∼-fiber-identifications-≃ H y)
\end{code}
Added 9 July 2024 by Tom de Jong.
\begin{code}
fiber-of-ap-≃' : {A : 𝓤 ̇ } {B : 𝓥 ̇ } (f : A → B)
{x y : A} (p : f x = f y)
→ fiber (ap f) p ≃ ((x , refl) =[ fiber' f (f x) ] (y , p))
fiber-of-ap-≃' f {x} {y} p =
fiber (ap f) p ≃⟨ ≃-refl _ ⟩
(Σ e ꞉ x = y , transport (λ - → (f x = f -)) e refl = p) ≃⟨ ≃-sym Σ-=-≃ ⟩
((x , refl) = (y , p)) ■
fiber-of-ap-≃ : {A : 𝓤 ̇ } {B : 𝓥 ̇ } (f : A → B)
{x y : A} (p : f x = f y)
→ fiber (ap f) p ≃ ((x , p) =[ fiber f (f y) ] (y , refl))
fiber-of-ap-≃ f {x} {y} p =
fiber (ap f) p ≃⟨ Σ-cong I ⟩
(Σ e ꞉ x = y , transport (λ - → f - = f y) e p = refl) ≃⟨ ≃-sym Σ-=-≃ ⟩
((x , p) = (y , refl)) ■
where
I : (e : x = y)
→ (ap f e = p) ≃ (transport (λ - → f - = f y) e p = refl)
I refl = (refl = p) ≃⟨ =-flip ⟩
(p = refl) ≃⟨ ≃-refl _ ⟩
(transport (λ - → f - = f x) refl p = refl) ■
∙-is-equiv-left : {X : 𝓤 ̇ } {x y z : X} (p : z = x)
→ is-equiv (λ (q : x = y) → p ∙ q)
∙-is-equiv-left {𝓤} {X} {x} {y} refl =
equiv-closed-under-∼ id (refl ∙_) (id-is-equiv (x = y))
(λ _ → refl-left-neutral)
∙-is-equiv-right : {X : 𝓤 ̇ } {x y z : X} (q : x = y)
→ is-equiv (λ (p : z = x) → p ∙ q)
∙-is-equiv-right {𝓤} {X} {x} {y} {z} refl = id-is-equiv (z = y)
\end{code}
Added by Tom de Jong, November 2021.
\begin{code}
open import UF.PropTrunc
module _ (pt : propositional-truncations-exist) where
open PropositionalTruncation pt
∥∥-cong : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → X ≃ Y → ∥ X ∥ ≃ ∥ Y ∥
∥∥-cong f = logically-equivalent-props-are-equivalent ∥∥-is-prop ∥∥-is-prop
(∥∥-functor ⌜ f ⌝) (∥∥-functor ⌜ f ⌝⁻¹)
∃-cong : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {Y' : X → 𝓦 ̇ }
→ ((x : X) → Y x ≃ Y' x)
→ ∃ Y ≃ ∃ Y'
∃-cong e = ∥∥-cong (Σ-cong e)
outer-∃-inner-Σ : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {A : (x : X) → Y x → 𝓦 ̇ }
→ (∃ x ꞉ X , ∃ y ꞉ Y x , A x y)
≃ (∃ x ꞉ X , Σ y ꞉ Y x , A x y)
outer-∃-inner-Σ {𝓤} {𝓥} {𝓦} {X} {Y} {A} =
logically-equivalent-props-are-equivalent ∥∥-is-prop ∥∥-is-prop f g
where
g : (∃ x ꞉ X , Σ y ꞉ Y x , A x y)
→ (∃ x ꞉ X , ∃ y ꞉ Y x , A x y)
g = ∥∥-functor (λ (x , y , a) → x , ∣ y , a ∣)
f : (∃ x ꞉ X , ∃ y ꞉ Y x , A x y)
→ (∃ x ꞉ X , Σ y ꞉ Y x , A x y)
f = ∥∥-rec ∥∥-is-prop ϕ
where
ϕ : (Σ x ꞉ X , ∃ y ꞉ Y x , A x y)
→ (∃ x ꞉ X , Σ y ꞉ Y x , A x y)
ϕ (x , p) = ∥∥-functor (λ (y , a) → x , y , a) p
\end{code}