Martin Escardo 25th October 2018.

The type of partial elements of a type (or lifting).

\begin{code}

{-# OPTIONS --safe --without-K #-}

open import MLTT.Spartan

module Lifting.Construction (𝓣 : Universe) where

open import UF.Subsingletons

𝓛 : 𝓤 ̇  𝓣    𝓤 ̇
𝓛 X = Σ P  𝓣 ̇ , (P  X) × is-prop P

is-defined : {X : 𝓤 ̇ }  𝓛 X  𝓣 ̇

is-defined (P , φ , i) = P

being-defined-is-prop : {X : 𝓤 ̇ } (l : 𝓛  X)  is-prop (is-defined l)
being-defined-is-prop (P , φ , i) = i

value : {X : 𝓤 ̇ } (l : 𝓛  X)  is-defined l  X
value (P , φ , i) = φ

\end{code}

The "total" elements of 𝓛 X:

\begin{code}

η : {X : 𝓤 ̇ }  X  𝓛 X
η x = 𝟙 ,  _  x) , 𝟙-is-prop

\end{code}

Its "undefined" element:

\begin{code}

 : {X : 𝓤 ̇ }  𝓛 X
 = 𝟘 , unique-from-𝟘 , 𝟘-is-prop

\end{code}

Added 7th November 2025. I don't know why we didn't work with the
following more natural definition.

\begin{code}

open import UF.Equiv
open import UF.EquivalenceExamples
open import UF.Sets
open import UF.Sets-Properties
open import UF.SubtypeClassifier
open import UF.SubtypeClassifier-Properties

𝓛' : 𝓤 ̇  𝓣    𝓤 ̇
𝓛' X = Σ p  Ω 𝓣 , (p holds  X)

𝓛-is-equiv-to-𝓛' : {X : 𝓤 ̇ }  𝓛 X  𝓛' X
𝓛-is-equiv-to-𝓛' {𝓤} {X} =
 (Σ P  𝓣 ̇ , (P  X) × is-prop P) ≃⟨ Σ-cong  P  ×-comm)  
 (Σ P  𝓣 ̇ , is-prop P × (P  X)) ≃⟨ ≃-sym Σ-assoc 
 (Σ p  Ω 𝓣 , (p holds  X))     

\end{code}

With this representation, it is easy to prove that 𝓛 X is a set if X is.

\begin{code}

open import UF.FunExt

𝓛-is-set : funext 𝓣 𝓣
          funext 𝓣 𝓤
          propext 𝓣
          {X : 𝓤 ̇ }  is-set X  is-set (𝓛 X)
𝓛-is-set fe fe' pe X-is-set = equiv-to-set
                                𝓛-is-equiv-to-𝓛'
                                (Σ-is-set
                                  (Ω-is-set fe pe)
                                   p  Π-is-set fe' λ _  X-is-set))

\end{code}