Martin Escardo and Tom de Jong, July 2023.
Some constructions with iterative multisets.
* The universe is a retract of the type π of iterative multisets.
* π is algebraically injective.
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import MLTT.Spartan hiding (_^_)
open import UF.Sets-Properties
open import UF.Univalence
open import UF.Universes
module Iterative.Multisets-Addendum
(ua : Univalence)
(π€ : Universe)
where
open import Iterative.Multisets π€
open import Iterative.Sets ua π€
open import UF.Base
open import UF.DiscreteAndSeparated
open import UF.Embeddings
open import UF.Equiv
open import UF.EquivalenceExamples
open import UF.ClassicalLogic
open import UF.FunExt
open import UF.HedbergApplications
open import UF.PropIndexedPiSigma
open import UF.Retracts
open import UF.Sets
open import UF.Size
open import UF.Subsingletons
open import UF.UA-FunExt
open import W.Type
private
π€βΊ : Universe
π€βΊ = π€ βΊ
fe : Fun-Ext
fe = Univalence-gives-Fun-Ext ua
fe' : FunExt
fe' π€ π₯ = fe {π€} {π₯}
open import Taboos.Decomposability fe'
open import InjectiveTypes.Blackboard fe'
\end{code}
The universe π€ is embedded as a retract of π. This seems to be a new
observation.
\begin{code}
πα΄Ή : π
πα΄Ή = ssup π unique-from-π
πα΄Ή-is-iset : is-iterative-set πα΄Ή
πα΄Ή-is-iset = unique-from-π-is-embedding , (Ξ» (x : π) β π-elim x)
πα΄Ή-is-h-isolated : is-h-isolated πα΄Ή
πα΄Ή-is-h-isolated {ssup X Ο} = isets-are-h-isolated πα΄Ή πα΄Ή-is-iset
πα΄Ή : π
πα΄Ή = ssup π Ξ» β β πα΄Ή
πα΄Ή-is-iset : is-iterative-set πα΄Ή
πα΄Ή-is-iset = global-point-is-embedding (Ξ» β β πα΄Ή) πα΄Ή-is-h-isolated ,
Ξ» β β πα΄Ή-is-iset
πα΄Ή-is-h-isolated : is-h-isolated πα΄Ή
πα΄Ή-is-h-isolated {ssup X Ο} = isets-are-h-isolated πα΄Ή πα΄Ή-is-iset
πα΄Ή-is-not-πα΄Ή : πα΄Ή β πα΄Ή
πα΄Ή-is-not-πα΄Ή p = π-is-not-π (ap π-root p)
πα΄Ή : π
πα΄Ή = ssup (π {π€} + π {π€}) (cases (Ξ» _ β πα΄Ή) (Ξ» _ β πα΄Ή))
universe-to-π : π€ Μ β π
universe-to-π X = ssup X (Ξ» x β πα΄Ή)
universe-to-π-is-section : π-root β universe-to-π βΌ id
universe-to-π-is-section X = refl
universe-is-retract-of-π : retract (π€ Μ ) of π
universe-is-retract-of-π = π-root , universe-to-π , universe-to-π-is-section
π-is-not-set : Β¬ is-set π
π-is-not-set i = universes-are-not-sets (ua π€)
(retract-of-set universe-is-retract-of-π i)
\end{code}
Although a section is not an embedding in general, in this case it is.
\begin{code}
universe-to-π-is-embedding : is-embedding universe-to-π
universe-to-π-is-embedding M@(ssup Y Ο) = II
where
I = fiber universe-to-π M ββ¨ β-refl _ β©
(Ξ£ X κ π€ Μ , ssup X (Ξ» x β πα΄Ή) οΌ (ssup Y Ο)) ββ¨ Iβ β©
(Ξ£ X κ π€ Μ , Ξ£ p κ X οΌ Y , (Ξ» x β πα΄Ή) οΌ Ο β Idtofun p) ββ¨ Iβ β©
(Ξ£ (X , p) κ (Ξ£ X κ π€ Μ , X οΌ Y) , (Ξ» x β πα΄Ή) οΌ Ο β Idtofun p) β
where
Iβ = Ξ£-cong (Ξ» X β π-οΌ)
Iβ = β-sym Ξ£-assoc
II : is-prop (fiber universe-to-π M)
II = equiv-to-prop I
(subsets-of-props-are-props _ _
(singleton-types'-are-props Y)
(constant-maps-are-h-isolated fe πα΄Ή πα΄Ή-is-h-isolated))
\end{code}
Submultisets.
\begin{code}
π-separation : (M : π) (P : π β π€ Μ )
β Ξ£ M' κ π , ((N : π) β (N β
M') β (N β
M Γ P N))
π-separation M@(ssup X Ο) P = M' , Q
where
M' : π
M' = ssup (Ξ£ x κ X , P (Ο x)) (Ξ» (x , p) β Ο x)
Qβ : (N : π) β N β
M' β N β
M Γ P N
Qβ N ((x , p) , refl) = (x , refl) , p
Qβ : (N : π) β N β
M Γ P N β N β
M'
Qβ N ((x , refl) , p) = (x , p) , refl
Ξ· : (N : π) β Qβ N β Qβ N βΌ id
Ξ· N ((x , p) , refl) = refl
Ξ΅ : (N : π) β Qβ N β Qβ N βΌ id
Ξ΅ N ((x , refl) , p) = refl
Q : (N : π) β N β
M' β (N β
M Γ P N)
Q N = qinveq (Qβ N) (Qβ N , Ξ· N , Ξ΅ N)
submultiset : π β (π β π€ Μ ) β π
submultiset M P = prβ (π-separation M P)
submultiset-β : (M : π) (P : π β π€ Μ )
β (N : π) β (N β
submultiset M P) β (N β
M Γ P N)
submultiset-β M P = prβ (π-separation M P)
\end{code}
The type of multisets is large, in the sense that it doesn' have a
small copy. This is proved using Russell's Paradox technique, using
separation as defined above.
\begin{code}
π-is-large : is-large π
π-is-large (X , π) = III
where
have-π : X β π
have-π = π
_ : π€ Μ
_ = X
_ : π€βΊ Μ
_ = π
M : π
M = ssup X β π β
M-universal : (N : π) β N β
M
M-universal N = β π ββ»ΒΉ N , inverses-are-sections' π N
P : (N : π) β π€ Μ
P N = Β¬ (N β
β» N)
R : π
R = submultiset M P
g : (N : π) β (N β
R) β (N β
M Γ Β¬ (N β
β» N))
g = submultiset-β M P
h : (R β
R) β (R β
β» R)
h = β
β»ββ
ua R R
I : R β
β» R β Β¬ (R β
β» R)
I i = prβ (β g R β (β h ββ»ΒΉ i))
II : Β¬ (R β
β» R) β R β
β» R
II Ξ½ = β h β (β g R ββ»ΒΉ (M-universal R , Ξ½))
III : π
III = not-equivalent-to-own-negation (I , II)
\end{code}
The above is Russell's paradox adapted to multisets. But we also have
the following alternative proof:
\begin{code}
π-is-large' : is-large π
π-is-large' π-is-small = II
where
I : (π€ Μ ) is π€ small
I = embedded-retract-is-small
universe-is-retract-of-π
universe-to-π-is-embedding
π-is-small
II : π
II = universes-are-large I
\end{code}
However, this proof, when expanded, is essentially the same as
that of Russell's paradox.
The type of multisets is algebraically injective, which is a new
result. We give two constructions, using Ξ£α΄Ή and Ξ α΄Ή defined below.
\begin{code}
Ξ£α΄Ή : {X : π€ Μ } β (X β π) β π
Ξ£α΄Ή {X} A = ssup
(Ξ£ x κ X , π-root (A x))
(Ξ» (x , y) β π-forest (A x) y)
_+α΄Ή_ : π β π β π
M +α΄Ή N = Ξ£α΄Ή (cases (Ξ» (_ : π {π€}) β M) (Ξ» (_ : π {π€}) β N))
prop-indexed-sumα΄Ή : {X : π€ Μ } {A : X β π}
β is-prop X
β (xβ : X) β Ξ£α΄Ή A οΌ A xβ
prop-indexed-sumα΄Ή {X} {A} i xβ = IV
where
π = (Ξ£ x κ X , π-root (A x)) ββ¨ prop-indexed-sum xβ i β©
π-root (A xβ) β
remark : β π β οΌ (Ξ» (x , y) β transport (Ξ» - β π-root (A -)) (i x xβ) y)
remark = refl
I : ((x , y) : Ξ£ x κ X , π-root (A x))
(p : x οΌ xβ)
β π-forest (A x) y οΌ π-forest (A xβ) (transport (Ξ» - β π-root (A -)) p y)
I _ refl = refl
II : ((x , y) : Ξ£ x κ X , π-root (A x))
β π-forest (A x) y οΌ π-forest (A xβ) (β π β (x , y))
II (x , y) = I (x , y) (i x xβ)
III : Ξ£α΄Ή A βα΄Ή ssup (π-root (A xβ)) (π-forest (A xβ))
III = π , (Ξ» Ο β idtoeqα΄Ή _ _ (II Ο))
IV = Ξ£α΄Ή A οΌβ¨ β π-οΌ-β ua _ _ ββ»ΒΉ III β©
ssup (π-root (A xβ)) (π-forest (A xβ)) οΌβ¨ π-Ξ· (A xβ) β©
A xβ β
π-is-aflabby-Ξ£ : aflabby π π€
π-is-aflabby-Ξ£ P P-is-prop f = Ξ£α΄Ή f , prop-indexed-sumα΄Ή P-is-prop
π-is-ainjective-Ξ£ : ainjective-type π π€ π€
π-is-ainjective-Ξ£ = aflabby-types-are-ainjective π π-is-aflabby-Ξ£
\end{code}
Notice that we use Ξ£α΄Ή (as well as Ξ ) in the following definition of Ξ α΄Ή.
\begin{code}
Ξ α΄Ή : {X : π€ Μ } β (X β π) β π
Ξ α΄Ή {X} A = ssup
(Ξ x κ X , π-root (A x))
(Ξ» g β Ξ£α΄Ή (Ξ» x β π-forest (A x) (g x)))
_Γα΄Ή_ : π β π β π
M Γα΄Ή N = Ξ α΄Ή (cases (Ξ» (_ : π {π€}) β M) (Ξ» (_ : π {π€}) β N))
\end{code}
Question. Is there a function Ξ α΄Ή of the above type that satisfies the
following equation? It seems that this possible for finite X. We guess
there isn't such a function for general X, including X = β.
This question is answered in gist.multiset-addendum-question
\begin{code}
Question =
{X : π€ Μ }
β Ξ£ Ξ α΄Ή κ ((X β π) β π)
, ((A : X β π) β Ξ α΄Ή A οΌ ssup
(Ξ x κ X , π-root (A x))
(Ξ» g β Ξ α΄Ή (Ξ» x β π-forest (A x) (g x))))
\end{code}
Here is the answer for X = π, up to equivalence:
\begin{code}
_Γα΄Ή'_ : π β π β π
(ssup X Ο) Γα΄Ή' (ssup Y Ξ³) = ssup (X Γ Y) (Ξ» (x , y) β (Ο x) Γα΄Ή' (Ξ³ y))
prop-indexed-productα΄Ή : {X : π€ Μ } {A : X β π}
β is-prop X
β (xβ : X) β Ξ α΄Ή A οΌ A xβ
prop-indexed-productα΄Ή {X} {A} i xβ = IV
where
π = (Ξ x κ X , π-root (A x)) ββ¨ prop-indexed-product xβ fe i β©
π-root (A xβ) β
remark : β π β οΌ Ξ» g β g xβ
remark = refl
I : (g : (x : X) β π-root (A x))
(x : X) (p : x οΌ xβ)
β π-forest (A x) (g x) οΌ π-forest (A xβ) (g xβ)
I g x refl = refl
II : (g : (x : X) β π-root (A x))
β Ξ£α΄Ή (Ξ» x β π-forest (A x) (g x)) οΌ π-forest (A xβ) (β π β g)
II g = Ξ£α΄Ή (Ξ» x β π-forest (A x) (g x)) οΌβ¨ IIβ β©
Ξ£α΄Ή (Ξ» x β π-forest (A xβ) (g xβ)) οΌβ¨ IIβ β©
π-forest (A xβ) (g xβ) οΌβ¨ refl β©
π-forest (A xβ) (β π β g) β
where
IIβ = ap Ξ£α΄Ή (dfunext fe (Ξ» x β I g x (i x xβ)))
IIβ = prop-indexed-sumα΄Ή {X} {Ξ» x β π-forest (A xβ) (g xβ)} i xβ
III : Ξ α΄Ή A βα΄Ή ssup (π-root (A xβ)) (π-forest (A xβ))
III = π , Ξ» g β idtoeqα΄Ή _ _ (II g)
IV : Ξ α΄Ή A οΌ A xβ
IV = Ξ α΄Ή A οΌβ¨ β π-οΌ-β ua _ _ ββ»ΒΉ III β©
ssup (π-root (A xβ)) (π-forest (A xβ)) οΌβ¨ π-Ξ· (A xβ) β©
A xβ β
π-is-aflabby-Ξ : aflabby π π€
π-is-aflabby-Ξ P P-is-prop f = Ξ α΄Ή f , prop-indexed-productα΄Ή P-is-prop
π-is-ainjective-Ξ : ainjective-type π π€ π€
π-is-ainjective-Ξ = aflabby-types-are-ainjective π π-is-aflabby-Ξ
π-is-ainjective : ainjective-type π π€ π€
π-is-ainjective = π-is-ainjective-Ξ£
\end{code}
It follows that π has no non-trivial decidable properties unless weak
excluded middle holds, which also seems to be a new result.
\begin{code}
decomposition-of-π-gives-WEM : decomposition π β typal-WEM π€
decomposition-of-π-gives-WEM =
decomposition-of-ainjective-type-gives-WEM
(univalence-gives-propext (ua π€))
π
π-is-ainjective
\end{code}