Martin Escardo and Tom de Jong 7th - 21st November 2024. We improve the universe levels of Lemma 14 of [1], which corresponds to `embedding-retract` from InjectiveTypes/Blackboard. We use this to remove resizing assumption of Theorem 51 of [1], which characterizes the algebraically injective types as the retracts of the algebras of the lifiting monad (also known as the partial-map classifier monad. [1] M.H. EscardΓ³. Injective type in univalent mathematics. https://doi.org/10.1017/S0960129520000225 \begin{code} {-# OPTIONS --safe --without-K #-} open import UF.FunExt module InjectiveTypes.CharacterizationViaLifting (fe : FunExt) where open import InjectiveTypes.Blackboard fe open import InjectiveTypes.OverSmallMaps fe open import MLTT.Spartan open import UF.Equiv open import UF.Size open import UF.Subsingletons private fe' : Fun-Ext fe' {π€} {π₯} = fe π€ π₯ \end{code} We first improve the universe levels of Blackboard.ainjectivity-of-Lifting. \begin{code} open import UF.Univalence module ainjectivity-of-Lifting' (π£ : Universe) (ua : is-univalent π£) where private pe : propext π£ pe = univalence-gives-propext ua open ainjectivity-of-Lifting π£ open import Lifting.UnivalentPrecategory π£ open import UF.Retracts Ξ·-is-small-map : {X : π€ Μ } β (Ξ· βΆ (X β π X)) is π£ small-map Ξ·-is-small-map {π€} {X} l = is-defined l , β-sym (Ξ·-fiber-same-as-is-defined X pe fe' fe' fe' l) \end{code} The following improves the universe levels of Lemma 50 of [1]. \begin{code} ainjective-is-retract-of-free-π-algebra' : ({π€} π₯ {π¦} : Universe) (D : π€ Μ ) β ainjective-type D (π£ β π₯) π¦ β retract D of (π D) ainjective-is-retract-of-free-π-algebra' {π€} π₯ D = embedding-retract' π₯ D (π D) Ξ· (Ξ·-is-embedding' π€ D ua fe') Ξ·-is-small-map ainjectives-in-terms-of-free-π-algebras' : (D : π€ Μ ) β ainjective-type D π£ π£ β (Ξ£ X κ π€ Μ , retract D of (π X)) ainjectives-in-terms-of-free-π-algebras' {π€} D = a , b where a : ainjective-type D π£ π£ β Ξ£ X κ π€ Μ , retract D of (π X) a i = D , ainjective-is-retract-of-free-π-algebra' π£ D i b : (Ξ£ X κ π€ Μ , retract D of (π X)) β ainjective-type D π£ π£ b (X , r) = retract-of-ainjective D (π X) (free-π-algebra-ainjective ua X) r \end{code} A particular case of interest that arises in practice is the following. \begin{code} ainjectives-in-terms-of-free-π-algebrasβΊ : (D : π£ βΊ Μ ) β ainjective-type D π£ π£ β (Ξ£ X κ π£ βΊ Μ , retract D of (π X)) ainjectives-in-terms-of-free-π-algebrasβΊ = ainjectives-in-terms-of-free-π-algebras' _ : {X : π£ βΊ Μ } β type-of (π X) οΌ π£ βΊ Μ _ = refl \end{code} The following removes the resizing assumption of Theorem 51 of [1]. \begin{code} ainjectives-in-terms-of-π-algebras : (D : π€ Μ ) β ainjective-type D π£ π£ β (Ξ£ A κ π£ βΊ β π€ Μ , π-alg A Γ retract D of A) ainjectives-in-terms-of-π-algebras {π€} D = a , b where a : ainjective-type D π£ π£ β (Ξ£ A κ π£ βΊ β π€ Μ , π-alg A Γ retract D of A) a i = π D , π-algebra-gives-alg (free-π-algebra ua D) , ainjective-is-retract-of-free-π-algebra' π£ D i b : (Ξ£ A κ π£ βΊ β π€ Μ , π-alg A Γ retract D of A) β ainjective-type D π£ π£ b (A , Ξ± , Ο) = retract-of-ainjective D A (π-alg-ainjective pe A Ξ±) Ο \end{code} Particular case of interest: \begin{code} ainjectives-in-terms-of-π-algebrasβΊ : (D : π£ βΊ Μ ) β ainjective-type D π£ π£ β (Ξ£ A κ π£ βΊ Μ , π-alg A Γ retract D of A) ainjectives-in-terms-of-π-algebrasβΊ = ainjectives-in-terms-of-π-algebras \end{code}