Martin Escardo, Chuangjie Xu, 2012.
As a simple application of coinduction and corecursion on ℕ∞, one can
show that the the inclusion map incl : ℕ∞ → ₂ℕ is part of a
retraction.
This exercise is artificial: a direct construction and proof of the
retraction would be shorter and perhaps clearer. However, it does
illustrate how co-recursion and co-induction can be used.
Recall that a retraction is a pair of maps r : X → Y and s : Y → X
such that r ∘ s : Y → Y is the identity, where r is called the
retraction and s the section. In this case, it follows that
s ∘ r : X → X is idempotent, and s is an injection and r is a
surjection. When such maps exists one says that Y is a retract of X.
The idea of the construction of the retraction is that we "read"
digits from α until we find a zero or forever, and count how long
this took.
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import UF.FunExt
module CoNaturals.Exercise (fe : FunExt) where
open import CoNaturals.Type
open import CoNaturals.UniversalProperty fe
open import MLTT.Spartan
open import MLTT.Two-Properties
open import Naturals.Sequence fe
open import Notation.CanonicalMap
ℕ∞-to-ℕ→𝟚-is-a-section : Σ ρ ꞉ ((ℕ → 𝟚) → ℕ∞) , ρ ∘ ι = id
ℕ∞-to-ℕ→𝟚-is-a-section = ρ , dfunext (fe 𝓤₀ 𝓤₀) lemma
where
f-ρ : 𝟚 → (ℕ → 𝟚) → 𝟙 + (ℕ → 𝟚)
f-ρ ₀ α = inl ⋆
f-ρ ₁ α = inr α
p-ρ : (ℕ → 𝟚) → 𝟙 + (ℕ → 𝟚)
p-ρ α = f-ρ (head α) (tail α)
ρ : (ℕ → 𝟚) → ℕ∞
ρ = ℕ∞-corec p-ρ
ρ-spec : PRED ∘ ρ = (𝟙+ ρ) ∘ p-ρ
ρ-spec = ℕ∞-corec-homomorphism p-ρ
ρ-spec₀ : (α : ℕ → 𝟚) → head α = ₀ → ρ α = Zero
ρ-spec₀ α r = coalg-morphism-Zero p-ρ ρ ρ-spec α ⋆ lemma
where
lemma : p-ρ α = inl ⋆
lemma = ap (λ - → f-ρ - (tail α)) r
ρ-spec₁ : (α : ℕ → 𝟚) → head α = ₁ → ρ α = Succ (ρ (tail α))
ρ-spec₁ α r = coalg-morphism-Succ p-ρ ρ ρ-spec α (tail α) lemma
where
lemma : p-ρ α = inr (tail α)
lemma = ap (λ - → f-ρ - (tail α)) r
R : ℕ∞ → ℕ∞ → 𝓤₀ ̇
R u v = Σ w ꞉ ℕ∞ , (ρ (ι w) = u) × (w = v)
r : (u : ℕ∞) → R (ρ (ι u)) u
r u = (u , refl , refl)
R-positivity : (u v : ℕ∞) → R u v → positivity u = positivity v
R-positivity u v (w , c , d) = 𝟚-equality-cases lemma₀ lemma₁
where
lemma₀ : positivity w = ₀ → positivity u = positivity v
lemma₀ r = ap positivity claim₃
where
claim₀ : ρ (ι w) = Zero
claim₀ = ρ-spec₀ (ι w) r
claim₁ : v = Zero
claim₁ = d ⁻¹ ∙ is-Zero-equal-Zero (fe 𝓤₀ 𝓤₀) r
claim₂ : ρ (ι w) = v
claim₂ = claim₀ ∙ claim₁ ⁻¹
claim₃ : u = v
claim₃ = c ⁻¹ ∙ claim₂
lemma₁ : positivity w = ₁ → positivity u = positivity v
lemma₁ r = claim₂ ∙ claim₄ ⁻¹
where
claim₀ : positivity (ρ (ι w)) = ₁
claim₀ = ap positivity (ρ-spec₁ (ι w) r)
claim₁ : positivity (ρ (ι w)) = positivity u
claim₁ = ap positivity c
claim₂ : positivity u = ₁
claim₂ = claim₁ ⁻¹ ∙ claim₀
claim₃ : positivity w = positivity v
claim₃ = ap positivity d
claim₄ : positivity v = ₁
claim₄ = claim₃ ⁻¹ ∙ r
R-Pred : (u v : ℕ∞) → R u v → R (Pred u) (Pred v)
R-Pred u v (w , c , d) = (Pred w , lemma₀ , lemma₁)
where
lemma₀ : ρ (ι (Pred w)) = Pred u
lemma₀ = claim ∙ claim₀
where
claim₀ : Pred (ρ (ι w)) = Pred u
claim₀ = ap Pred c
claim : ρ (ι (Pred w)) = Pred (ρ (ι w))
claim = 𝟚-equality-cases claim₁ claim₂
where
claim₁ : is-Zero w → ρ (ι (Pred w)) = Pred (ρ (ι w))
claim₁ r = c₃ ∙ c₅ ⁻¹
where
c₀ : w = Zero
c₀ = is-Zero-equal-Zero (fe 𝓤₀ 𝓤₀) r
c₁ : Pred w = Zero
c₁ = ap Pred c₀
c₂ : ι (Pred w) 0 = ₀
c₂ = ap (head ∘ ι) c₁
c₃ : ρ (ι (Pred w)) = Zero
c₃ = ρ-spec₀ (ι (Pred w)) c₂
c₄ : ρ (ι w) = Zero
c₄ = ρ-spec₀ (ι w) r
c₅ : Pred (ρ (ι w)) = Zero
c₅ = ap Pred c₄
claim₂ : is-positive w → ρ (ι (Pred w)) = Pred (ρ (ι w))
claim₂ r = c₃ ∙ c₁ ⁻¹
where
c₀ : ρ (ι w) = Succ (ρ (tail (ι w)))
c₀ = ρ-spec₁ (ι w) r
c₁ : Pred (ρ (ι w)) = ρ (tail (ι w))
c₁ = ap Pred c₀ ∙ Pred-Succ
c₃ : ρ (ι (Pred w)) = ρ (tail (ι w))
c₃ = refl
lemma₁ : Pred w = Pred v
lemma₁ = ap Pred d
R-bisimulation : ℕ∞-bisimulation R
R-bisimulation u v r = (R-positivity u v r , R-Pred u v r)
lemma : (u : ℕ∞) → ρ (ι u) = u
lemma u = ℕ∞-coinduction R R-bisimulation (ρ (ι u)) u (r u)
\end{code}