Martin Escardo, Chuangjie Xu, 2012.

As a simple application of coinduction and corecursion on ℕ∞, one can
show that the the inclusion map incl : ℕ∞ → ₂ℕ is part of a
retraction.

This exercise is artificial: a direct construction and proof of the
retraction would be shorter and perhaps clearer. However, it does
illustrate how co-recursion and co-induction can be used.

Recall that a retraction is a pair of maps r : X → Y and s : Y → X
such that r ∘ s : Y → Y is the identity, where r is called the
retraction and s the section. In this case, it follows that
s ∘ r : X → X is idempotent, and s is an injection and r is a
surjection. When such maps exists one says that Y is a retract of X.

The idea of the construction of the retraction is that we "read"
digits from α until we find a zero or forever, and count how long
this took.

\begin{code}

{-# OPTIONS --safe --without-K #-}

open import UF.FunExt

module CoNaturals.Exercise (fe : FunExt) where

open import CoNaturals.Type
open import CoNaturals.UniversalProperty fe
open import MLTT.Spartan
open import MLTT.Two-Properties
open import Naturals.Sequence fe
open import Notation.CanonicalMap

ℕ∞-to-ℕ→𝟚-is-a-section : Σ ρ  ((  𝟚)  ℕ∞) , ρ  ι  id
ℕ∞-to-ℕ→𝟚-is-a-section  = ρ , dfunext (fe 𝓤₀ 𝓤₀) lemma
 where
  f-ρ : 𝟚  (  𝟚)  𝟙 + (  𝟚)
  f-ρ  α = inl 
  f-ρ  α = inr α

  p-ρ : (  𝟚)  𝟙 + (  𝟚)
  p-ρ α = f-ρ (head α) (tail α)

  ρ : (  𝟚)  ℕ∞
  ρ = ℕ∞-corec p-ρ

  ρ-spec : PRED  ρ  (𝟙+ ρ)  p-ρ
  ρ-spec = ℕ∞-corec-homomorphism p-ρ

  ρ-spec₀ : (α :   𝟚)  head α    ρ α  Zero
  ρ-spec₀ α r = coalg-morphism-Zero p-ρ ρ ρ-spec α  lemma
   where
    lemma : p-ρ α  inl 
    lemma = ap  -  f-ρ - (tail α)) r

  ρ-spec₁ : (α :   𝟚)  head α    ρ α  Succ (ρ (tail α))
  ρ-spec₁ α r = coalg-morphism-Succ p-ρ ρ ρ-spec α (tail α) lemma
   where
    lemma : p-ρ α  inr (tail α)
    lemma = ap  -  f-ρ - (tail α)) r

  R : ℕ∞  ℕ∞  𝓤₀ ̇
  R u v = Σ w  ℕ∞ , (ρ (ι w)  u) × (w  v)

  r : (u : ℕ∞)  R (ρ (ι u)) u
  r u = (u , refl , refl)

  R-positivity : (u v : ℕ∞)  R u v  positivity u  positivity v
  R-positivity u v (w , c , d) = 𝟚-equality-cases lemma₀ lemma₁
   where
    lemma₀ : positivity w    positivity u  positivity v
    lemma₀ r = ap positivity claim₃
     where
      claim₀ : ρ (ι w)  Zero
      claim₀ = ρ-spec₀ (ι w) r
      claim₁ : v  Zero
      claim₁ = d ⁻¹  is-Zero-equal-Zero (fe 𝓤₀ 𝓤₀) r
      claim₂ : ρ (ι w)  v
      claim₂ = claim₀  claim₁ ⁻¹
      claim₃ : u  v
      claim₃ = c ⁻¹  claim₂

    lemma₁ : positivity w    positivity u  positivity v
    lemma₁ r = claim₂  claim₄ ⁻¹
     where
      claim₀ : positivity (ρ (ι w))  
      claim₀ = ap positivity (ρ-spec₁ (ι w) r)

      claim₁ : positivity (ρ (ι w))  positivity u
      claim₁ = ap positivity c

      claim₂ : positivity u  
      claim₂ = claim₁ ⁻¹  claim₀
      claim₃ : positivity w  positivity v
      claim₃ = ap positivity d

      claim₄ : positivity v  
      claim₄ = claim₃ ⁻¹  r

  R-Pred : (u v : ℕ∞)  R u v  R (Pred u) (Pred v)
  R-Pred u v (w , c , d) = (Pred w , lemma₀ , lemma₁)
   where
    lemma₀ : ρ (ι (Pred w))  Pred u
    lemma₀ = claim  claim₀
     where
     claim₀ : Pred (ρ (ι w))  Pred u
     claim₀ = ap Pred c

     claim :  ρ (ι (Pred w))  Pred (ρ (ι w))
     claim = 𝟚-equality-cases claim₁ claim₂
      where
       claim₁ : is-Zero w  ρ (ι (Pred w))  Pred (ρ (ι w))
       claim₁ r = c₃  c₅ ⁻¹
        where
         c₀ : w  Zero
         c₀ = is-Zero-equal-Zero (fe 𝓤₀ 𝓤₀) r
         c₁ : Pred w  Zero
         c₁ = ap Pred c₀

         c₂ : ι (Pred w) 0  
         c₂ = ap (head  ι) c₁

         c₃ : ρ (ι (Pred w))  Zero
         c₃ = ρ-spec₀ (ι (Pred w)) c₂

         c₄ : ρ (ι w)  Zero
         c₄ = ρ-spec₀ (ι w) r

         c₅ : Pred (ρ (ι w))  Zero
         c₅ = ap Pred c₄
       claim₂ : is-positive w  ρ (ι (Pred w))  Pred (ρ (ι w))
       claim₂ r = c₃  c₁ ⁻¹
        where
         c₀ : ρ (ι w)  Succ (ρ (tail (ι w)))
         c₀ = ρ-spec₁ (ι w) r

         c₁ : Pred (ρ (ι w))  ρ (tail (ι w))
         c₁ = ap Pred c₀  Pred-Succ

         c₃ : ρ (ι (Pred w))  ρ (tail (ι w))
         c₃ = refl

    lemma₁ : Pred w  Pred v
    lemma₁ = ap Pred d

  R-bisimulation : ℕ∞-bisimulation R
  R-bisimulation u v r = (R-positivity u v r , R-Pred u v r)

  lemma : (u : ℕ∞)  ρ (ι u)  u
  lemma u = ℕ∞-coinduction R R-bisimulation (ρ (ι u)) u (r u)

\end{code}