Martin Escardo 2011. \begin{code} {-# OPTIONS --safe --without-K #-} open import UF.FunExt module Naturals.Sequence (fe : FunExt) where open import MLTT.Spartan hiding (_+_) open import UF.Retracts open import Naturals.Addition _∶∶_ : {X : ℕ → 𝓤 ̇ } → X 0 → ((n : ℕ) → X (succ n)) → ((n : ℕ) → X n) (x ∶∶ α) 0 = x (x ∶∶ α) (succ n) = α n head : {X : ℕ → 𝓤 ̇ } → ((n : ℕ) → X n) → X 0 head α = α 0 tail : {X : ℕ → 𝓤 ̇ } → ((n : ℕ) → X n) → ((n : ℕ) → X (succ n)) tail α n = α (succ n) head-tail-eta : {X : ℕ → 𝓤 ̇ } {α : (n : ℕ) → X n} → (head α ∶∶ tail α) = α head-tail-eta {𝓤} {X} = dfunext (fe 𝓤₀ 𝓤) lemma where lemma : {α : (n : ℕ) → X n} → (i : ℕ) → (head α ∶∶ tail α) i = α i lemma 0 = refl lemma (succ i) = refl private cons : {X : ℕ → 𝓤 ̇ } → X 0 × ((n : ℕ) → X (succ n)) → ((n : ℕ) → X n) cons (x , α) = x ∶∶ α cons-has-section' : {X : ℕ → 𝓤 ̇ } → has-section' (cons {𝓤} {X}) cons-has-section' α = (head α , tail α) , head-tail-eta \end{code} (In fact it is an equivalence, but I won't bother, until this is needed.) \begin{code} itail : {X : ℕ → 𝓤 ̇ } → (n : ℕ) → ((i : ℕ) → X i) → ((i : ℕ) → X (i + n)) itail n α i = α (i + n) \end{code} Added 16th July 2018. Corecursion on sequences ℕ → A. p = (h,t) X ------------------> A × X | | | | f | | A × f | | | | v v (ℕ → A) ---------------> A × (ℕ → A) P = (head, tail) head (f x) = h x tail (f x) = f (t x) Or equivalentaily f x = cons (h x) (f (t x)) \begin{code} module _ {𝓤 𝓥 : Universe} {A : 𝓤 ̇ } {X : 𝓥 ̇ } (h : X → A) (t : X → X) where private f : X → (ℕ → A) f x zero = h x f x (succ n) = f (t x) n seq-corec = f seq-corec-head : head ∘ f ∼ h seq-corec-head x = refl seq-corec-tail : tail ∘ f ∼ f ∘ t seq-corec-tail x = dfunext (fe 𝓤₀ 𝓤) (λ n → refl) seq-final : Σ! f ꞉ (X → (ℕ → A)), (head ∘ f ∼ h) × (tail ∘ f ∼ f ∘ t) seq-final = (seq-corec , seq-corec-head , seq-corec-tail) , c where c : (f f' : X → ℕ → A) → (head ∘ f ∼ h) × (tail ∘ f ∼ f ∘ t) → (head ∘ f' ∼ h) × (tail ∘ f' ∼ f' ∘ t) → f = f' c f f' (a , b) (c , d) = dfunext (fe 𝓥 𝓤) (λ x → dfunext (fe 𝓤₀ 𝓤) (r x)) where r : (x : X) (n : ℕ) → f x n = f' x n r x zero = a x ∙ (c x)⁻¹ r x (succ n) = f x (succ n) =⟨ ap (λ - → - n) (b x) ⟩ f (t x) n =⟨ r (t x) n ⟩ f' (t x) n =⟨ ( ap (λ - → - n) (d x)) ⁻¹ ⟩ f' x (succ n) ∎ \end{code} Added 11th September 2018. \begin{code} seq-bisimulation : {A : 𝓤 ̇ } → ((ℕ → A) → (ℕ → A) → 𝓥 ̇ ) → 𝓤 ⊔ 𝓥 ̇ seq-bisimulation {𝓤} {𝓥} {A} R = (α β : ℕ → A) → R α β → (head α = head β) × R (tail α) (tail β) seq-coinduction : {A : 𝓤 ̇ } (R : (ℕ → A) → (ℕ → A) → 𝓥 ̇ ) → seq-bisimulation R → (α β : ℕ → A) → R α β → α = β seq-coinduction {𝓤} {𝓥} {A} R b α β r = dfunext (fe 𝓤₀ 𝓤) (h α β r) where h : (α β : ℕ → A) → R α β → α ∼ β h α β r zero = pr₁ (b α β r) h α β r (succ n) = h (tail α) (tail β) (pr₂ (b α β r)) n \end{code}