Martin Escardo, November 2023. We show that the two types ℕ∞ and ℕ∞' of conatural numbers are equivalent. For that purpose, we develop an automorphism of the Cantor type ℕ → 𝟚 that restricts restricts to an equivalence between ℕ∞ and the subtype ℕ∞ := Σ α ꞉ (ℕ → 𝟚) , is-prop (Σ n ꞉ ℕ , α n = ₁) of the Cantor type (of binary sequences with at most one ₁). Notice that the condition on α can be expressed as "is-prop (fiber α ₁)". \begin{code} {-# OPTIONS --safe --without-K #-} module CoNaturals.Equivalence where open import CoNaturals.GenericConvergentSequence open import CoNaturals.GenericConvergentSequence2 open import MLTT.Spartan open import MLTT.Two-Properties open import Naturals.Order open import Naturals.Properties open import Notation.CanonicalMap open import Notation.Order open import TypeTopology.Cantor open import UF.Equiv open import UF.FunExt open import UF.Subsingletons open import UF.Subsingletons-FunExt private T = T-cantor private instance Canonical-Map-ℕ-ℕ∞' : Canonical-Map ℕ ℕ∞' ι {{Canonical-Map-ℕ-ℕ∞'}} = ℕ-to-ℕ∞' \end{code} To show that ℕ∞' gives an equivalent copy of ℕ∞, we consider a particular equivalence (ℕ → 𝟚) ≃ (ℕ → 𝟚). \begin{code} ϕ-cantor γ-cantor : (ℕ → 𝟚) → (ℕ → 𝟚) ϕ-cantor α n = cons ₁ α n ⊕ α n γ-cantor β 0 = complement (β 0) γ-cantor β (succ n) = γ-cantor β n ⊕ β (succ n) private ϕ γ : (ℕ → 𝟚) → (ℕ → 𝟚) ϕ = ϕ-cantor γ = γ-cantor η-cantor : (β : ℕ → 𝟚) → ϕ (γ β) ∼ β η-cantor β 0 = complement-involutive (β 0) η-cantor β (succ n) = ⊕-involutive {γ β n} {β (succ n)} ε-cantor : (α : ℕ → 𝟚) → γ (ϕ α) ∼ α ε-cantor α 0 = complement-involutive (α 0) ε-cantor α (succ n) = γ (ϕ α) (succ n) =⟨ refl ⟩ γ (ϕ α) n ⊕ α n ⊕ α (succ n) =⟨ I ⟩ α n ⊕ α n ⊕ α (succ n) =⟨ II ⟩ α (succ n) ∎ where I = ap (_⊕ α n ⊕ α (succ n)) (ε-cantor α n) II = ⊕-involutive {α n} {α (succ n)} private η : (β : ℕ → 𝟚) → ϕ (γ β) ∼ β ε : (α : ℕ → 𝟚) → γ (ϕ α) ∼ α η = η-cantor ε = ε-cantor \end{code} We now discuss the restrictions of ϕ and γ mentioned above. Notice that the following is by four cases without induction. \begin{code} ϕ-property : funext₀ → (α : ℕ → 𝟚) → is-decreasing α → has-at-most-one-₁ (ϕ α) ϕ-property fe α δ (0 , p) (0 , q) = to-T-= refl ϕ-property fe α δ (0 , p) (succ m , q) = 𝟘-elim (Zero-not-Succ (II ⁻¹ ∙ IV)) where u : ℕ∞ u = (α , δ) I = α 0 =⟨ (complement-involutive (α 0))⁻¹ ⟩ complement (complement (α 0)) =⟨ ap complement p ⟩ complement ₁ =⟨ refl ⟩ ₀ ∎ II : u = Zero II = is-Zero-equal-Zero fe I III : (α m = ₁) × (α (succ m) = ₀) III = ⊕-property₁ {α m} {α (succ m)} (δ m) q IV : u = Succ (ι m) IV = uncurry (Succ-criterion fe) III ϕ-property fe α δ (succ n , p) (0 , q)= 𝟘-elim (Zero-not-Succ (II ⁻¹ ∙ IV)) where u : ℕ∞ u = (α , δ) I = α 0 =⟨ (complement-involutive (α 0))⁻¹ ⟩ complement (complement (α 0)) =⟨ ap complement q ⟩ complement ₁ =⟨ refl ⟩ ₀ ∎ II : u = Zero II = is-Zero-equal-Zero fe I III : (α n = ₁) × (α (succ n) = ₀) III = ⊕-property₁ {α n} {α (succ n)} (δ n) p IV : u = Succ (ι n) IV = uncurry (Succ-criterion fe) III ϕ-property fe α δ (succ n , p) (succ m , q) = VI where u : ℕ∞ u = (α , δ) I : (α n = ₁) × (α (succ n) = ₀) I = ⊕-property₁ (δ n) p II : (α m = ₁) × (α (succ m) = ₀) II = ⊕-property₁ (δ m) q III : u = Succ (ι n) III = uncurry (Succ-criterion fe) I IV : u = Succ (ι m) IV = uncurry (Succ-criterion fe) II V : succ n = succ m V = ℕ-to-ℕ∞-lc (III ⁻¹ ∙ IV) VI : (succ n , p) = (succ m , q) VI = to-T-= V \end{code} The following two observations give an alternative understanding of the definition of γ: \begin{code} γ-case₀ : {β : ℕ → 𝟚} {n : ℕ} → β (succ n) = ₀ → γ β (succ n) = γ β n γ-case₀ = ⊕-₀-right-neutral' γ-case₁ : {β : ℕ → 𝟚} {n : ℕ} → β (succ n) = ₁ → γ β (succ n) = complement (γ β n) γ-case₁ = ⊕-left-complement \end{code} We need the following consequences of the sequence β having at most one ₁. \begin{code} at-most-one-₁-Lemma₀ : (β : ℕ → 𝟚) → has-at-most-one-₁ β → {m n : ℕ} → (β m = ₁) × (β n = ₁) → m = n at-most-one-₁-Lemma₀ β π {m} {n} (p , q) = ap pr₁ (π (m , p) (n , q)) at-most-one-₁-Lemma₁ : (β : ℕ → 𝟚) → has-at-most-one-₁ β → {m n : ℕ} → m ≠ n → β m = ₁ → β n = ₀ at-most-one-₁-Lemma₁ β π {m} {n} ν p = II where I : β n ≠ ₁ I q = ν (at-most-one-₁-Lemma₀ β π (p , q)) II : β n = ₀ II = different-from-₁-equal-₀ I \end{code} The main lemma about γ is the following, where we are interested in the choice k = n, but we need to prove the lemma for general k to get a suitable induction hypothesis. \begin{code} γ-lemma : (β : ℕ → 𝟚) → has-at-most-one-₁ β → (n : ℕ) → β (succ n) = ₁ → (k : ℕ) → k ≤ n → γ β k = ₁ γ-lemma β π n p 0 l = w where w : complement (β 0) = ₁ w = complement₁-back (at-most-one-₁-Lemma₁ β π (positive-not-zero n) p) γ-lemma β π 0 p (succ k) () γ-lemma β π (succ n) p (succ k) l = w where IH : γ β k = ₁ IH = γ-lemma β π (succ n) p k (≤-trans k n (succ n) l (≤-succ n)) I : succ (succ n) ≠ succ k I m = not-less-than-itself n r where q : succ n = k q = succ-lc m r : succ n ≤ n r = transport⁻¹ (_≤ n) q l II : β (succ k) = ₀ II = at-most-one-₁-Lemma₁ β π I p w : γ β k ⊕ β (succ k) = ₁ w = ⊕-intro₁₀ IH II \end{code} With this it is almost immediate that γ produces a decreasing sequence if it is given a sequence with at most one ₁: \begin{code} γ-property : (β : ℕ → 𝟚) → has-at-most-one-₁ β → is-decreasing (γ β) γ-property β π n = IV where I : β (succ n) = ₁ → γ β n = ₁ I p = γ-lemma β π n p n (≤-refl n) II : β (succ n) ≤ γ β n II = ≤₂-criterion I III : γ β n ⊕ β (succ n) ≤ γ β n III = ≤₂-add-left (γ β n) (β (succ n)) II IV : γ β (succ n) ≤ γ β n IV = III module ℕ∞-equivalence (fe : funext₀) where ℕ∞-to-ℕ∞' : ℕ∞ → ℕ∞' ℕ∞-to-ℕ∞' (α , δ) = ϕ α , ϕ-property fe α δ ℕ∞'-to-ℕ∞ : ℕ∞' → ℕ∞ ℕ∞'-to-ℕ∞ (β , π) = γ β , γ-property β π ℕ∞-η : ℕ∞'-to-ℕ∞ ∘ ℕ∞-to-ℕ∞' ∼ id ℕ∞-η (α , δ) = to-subtype-= (being-decreasing-is-prop fe) (dfunext fe (ε α)) ℕ∞-ε : ℕ∞-to-ℕ∞' ∘ ℕ∞'-to-ℕ∞ ∼ id ℕ∞-ε (β , π) = to-subtype-= (λ β → being-prop-is-prop fe) (dfunext fe (η β)) \end{code} And with this we get the promised equivalence. \begin{code} ℕ∞-to-ℕ∞'-≃ : ℕ∞ ≃ ℕ∞' ℕ∞-to-ℕ∞'-≃ = qinveq ℕ∞-to-ℕ∞' (ℕ∞'-to-ℕ∞ , ℕ∞-η , ℕ∞-ε) \end{code}