{-# OPTIONS --no-termination-check #-}
-- We use Berger's modified bar recursion functional to realize the
-- K-Shift.
module K-Shift-MBR where
open import Logic
open import LogicalFacts
open import Naturals
open import JK-Monads
open import Finite
K-∀-shift-mbr : {R : Ω} {A : ℕ → Ω} →
-------------
(∀(n : ℕ) → R → A n) → -- efqs,
(∀(n : ℕ) → K(A n)) → K(∀(n : ℕ) → A n) -- shift.
K-∀-shift-mbr {R} {A} efqs φs p = mbr {0} (λ ())
where
mbr : {m : ℕ} → (∀(i : smaller m) → A(embed i)) → R
mbr {m} s = p(override s (λ n → efqs n (φs m (λ x → mbr(append {A} s x)))))