{-# OPTIONS --no-termination-check #-} -- We use the Berardi-Bezem-Coquand functional to realize the J-Shift -- (and hence the K-Shift in another module). module J-Shift-BBC where open import Logic open import LogicalFacts open import Naturals open import JK-Monads J-∀-shift-bbc : {R : Ω} {A : ℕ → Ω} → ------------- (∀(n : ℕ) → J(A n)) → J(∀(n : ℕ) → A n) J-∀-shift-bbc {R} {A} ε = bbc where bbc : J {R} (∀(n : ℕ) → A n) bbc p i = ε i (λ x → J-K bbc (p ∘ mapsto {A} i x))