Martin Escardo 2012.

See my paper "Infinite sets that satisfy the principle of
omniscience" for a discussion of the type ℕ∞ defined here. We
observe that although we prove the omniscience in this module, it
is not needed to prove Rice's Theorem for the universe.

\begin{code}

{-# OPTIONS --without-K #-}

module GenericConvergentSequence where

open import CurryHoward
open import Equality
open import Extensionality
open import Naturals
open import Two
open import Cantor
open import SetsAndFunctions
open import FirstProjectionInjective

\end{code}

Definition (The generic convergent sequence).
We use u,v to range over ℕ∞ and α,β to range over ₂ℕ:

\begin{code}

decreasing : ₂ℕ  Prp
decreasing α = ∀(i : )  α i  α(succ i)

ℕ∞ : Set
ℕ∞ = Σ \(α : ₂ℕ)  decreasing α

incl : ℕ∞  ₂ℕ
incl = π₀

incl-mono : ∀{u v : ℕ∞}  incl u  incl v  u  v
incl-mono {u} {v} = π₀-mono at-most-one u v
 where
  at-most-one : ∀{α : ₂ℕ}  ∀(p q : decreasing α)  p  q
  at-most-one {α} p q = extensionality fact₂
   where
    open import UIP
    fact₀ : ∀{i}  ∀(f g : α(succ i)    α i  )  f  g
    fact₀ f g = extensionality fact₁
     where
      fact₁ :  r  f r  g r
      fact₁ r = UIP  (f r) (g r)
    fact₂ :  i  p i  q i
    fact₂ i = fact₀ (p i) (q i)


Zero : ℕ∞
Zero = ((λ i  ) , λ i  id {  })

Succ : ℕ∞  ℕ∞
Succ (α , reason) = (α' , reason')
 where
  α' : ₂ℕ
  α' 0 = 
  α'(succ n) = α n
  reason' : decreasing α'
  reason' 0 = λ r  refl
  reason' (succ i) = reason i

positivity : ℕ∞  
positivity u = incl u 0

isZero : ℕ∞  Prp
isZero u = positivity u  

positive : ℕ∞  Prp
positive u = positivity u  

isZero-Zero : isZero Zero
isZero-Zero = refl

Zero-not-Succ : ∀{u : ℕ∞}  Zero  Succ u
Zero-not-Succ {u} r = zero-is-not-one(cong positivity r)


 : ℕ∞
 = ((λ i  ) , λ i  id {  })

Succ-∞-is-∞ : Succ   
Succ-∞-is-∞ = incl-mono(extensionality lemma)
 where lemma :  i  incl(Succ ) i  incl  i
       lemma 0 = refl
       lemma (succ i) = refl


unique-fixed-point-of-Succ :  u  u  Succ u  u  
unique-fixed-point-of-Succ u r = incl-mono(extensionality lemma)
 where
  fact :  i  incl u i  incl(Succ u) i
  fact i = cong  w  incl w i) r
  lemma :  i  incl u i  
  lemma 0 = fact 0
  lemma (succ i) = trans (fact(succ i)) (lemma i)



Pred : ℕ∞  ℕ∞
Pred (α , reason) = (α  succ , reason  succ)

Pred-Zero-is-Zero : Pred Zero  Zero
Pred-Zero-is-Zero = refl

Pred-Succ-u-is-u : ∀{u : ℕ∞}  Pred(Succ u)  u
Pred-Succ-u-is-u {u} = refl

Pred-∞-is-∞ : Pred   
Pred-∞-is-∞ = refl

Succ-mono : ∀{u v : ℕ∞}  Succ u  Succ v  u  v
Succ-mono = cong Pred

under :   ℕ∞
under 0 = Zero
under (succ n) = Succ(under n)

_≣_ : ℕ∞    Prp
u  n = u  under n


under-mono : ∀{m n : }  under m  under n  m  n
under-mono {0} {0} r = refl
under-mono {0} {succ n} r = ⊥-elim(Zero-not-Succ r)
under-mono {succ m} {0} r = ⊥-elim(Zero-not-Succ (sym r))
under-mono {succ m} {succ n} r = cong succ (under-mono {m} {n} (Succ-mono r))


under-diagonal₀ :

  ∀(n : )  incl(under n) n  

under-diagonal₀ 0 = refl
under-diagonal₀ (succ n) = under-diagonal₀ n


under-diagonal₁ :

  ∀(n : )  incl(under(succ n)) n  

under-diagonal₁ 0 = refl
under-diagonal₁ (succ n) = under-diagonal₁ n


isZero-equal-Zero :

  ∀{u : ℕ∞}  isZero u  u  Zero

isZero-equal-Zero {u} base = incl-mono(extensionality lemma)
 where
  lemma : ∀(i : )  incl u i  incl Zero i
  lemma 0 = base
  lemma (succ i) = Lemma[[a≡₁→b≡₁]→b≡₀→a≡₀] (π₁ u i) (lemma i)

not-Zero-is-Succ : ∀{u : ℕ∞}  u  Zero  u  Succ(Pred u)
not-Zero-is-Succ {u} f = incl-mono(extensionality lemma)
 where
  lemma :  i  incl u i  incl(Succ(Pred u)) i
  lemma 0 = Lemma[b≠₀→b≡₁](f  isZero-equal-Zero)
  lemma (succ i) = refl

positive-is-not-Zero : ∀{u : ℕ∞}  positive u  u  Zero
positive-is-not-Zero {u} r s = lemma r
 where
  lemma : ¬(positive u)
  lemma = Lemma[b≡₀→b≠₁](cong positivity s)

positive-equal-Succ :

  ∀{u : ℕ∞}  positive u  u  Succ(Pred u)

positive-equal-Succ r =
 not-Zero-is-Succ (positive-is-not-Zero r)


Succ-criterion :

  ∀{u : ℕ∞}  ∀{n}  incl u n    incl u(succ n)    u  Succ(under n)

Succ-criterion {u} {n} r s = incl-mono(extensionality(lemma u n r s))
 where
  lemma :  u   n  incl u n    incl u(succ n)  
          i  incl u i  incl (Succ(under n)) i
  lemma u 0 r s 0 = r
  lemma u 0 r s (succ i) = lemma₀ i
     where
      lemma₀ :  i  incl u (succ i)  
      lemma₀ 0 = s
      lemma₀ (succ i) = Lemma[[a≡₁→b≡₁]→b≡₀→a≡₀] (π₁ u (succ i)) (lemma₀ i)
  lemma u (succ n) r s 0 = lemma₁ (succ n) r
     where
      lemma₁ :  n  incl u n    positive u
      lemma₁ 0 t = t
      lemma₁ (succ n) t = lemma₁ n (π₁ u n t)
  lemma u (succ n) r s (succ i) = lemma (Pred u) n r s i


∞-is-not-ℕ : ∀(n : )    under n
∞-is-not-ℕ n s =
 zero-is-not-one (sym(trans (cong  w  incl w n) s) (under-diagonal₀ n)))



not-ℕ-is-∞ :

  ∀{u : ℕ∞}  (∀(n : )  u  under n)  u  

not-ℕ-is-∞ {u} f = incl-mono(extensionality lemma)
 where
  lemma : ∀(n : )  incl u n  
  lemma 0 = Lemma[b≠₀→b≡₁] r  f 0 (isZero-equal-Zero r))
  lemma (succ n) = Lemma[b≠₀→b≡₁] r  f(succ n)(Succ-criterion (lemma n) r))


ℕ∞-density :

  ∀{p : ℕ∞  }  (∀ n  p(under n)  )  p      u  p u  

ℕ∞-density {p} f r u = Lemma[b≠₀→b≡₁] lemma
 where
  claim : p u    ∀(n : )  u  under n
  claim g n = contra-positive  s  trans(cong p s) (f n))(Lemma[b≡₀→b≠₁] g)

  claim-∞ : p u    u  
  claim-∞ = (contra-positive  s  trans(cong p s) r))  Lemma[b≡₀→b≠₁]

  lemma : p u  
  lemma t = claim-∞ t (not-ℕ-is-∞(claim t))


ℕ∞-searchable :

  ∀(p : ℕ∞  )   \a  p a     u  p u  

ℕ∞-searchable p =  ∃-intro a Lemma
 where
  α : ₂ℕ
  α 0       = p(under 0)
  α(succ n) = min (α n) (p(under(succ n)))

  a : ℕ∞
  a = (α , λ i  Lemma[minab≤a])

  Dagger₀ : ∀(n : )  a  under n  p(under n)  
  Dagger₀ 0 r =  cong  w  incl w 0) r
  Dagger₀ (succ n) r = trans w t
   where
    s : α n  
    s = trans (cong  w  incl w n) r) (under-diagonal₁ n)

    t : α(succ n)  
    t = trans (cong  w  incl w(succ n)) r) (under-diagonal₀ n)

    w : p(under(succ n))  α(succ n)
    w = sym(cong b  min b (p(under(succ n)))) s)

  Dagger₁ : a    ∀(n : )  p(under n)  
  Dagger₁ r 0 = cong  w  incl w 0) r
  Dagger₁ r (succ n) = trans w t
   where
    s : α n  
    s = cong  w  incl w n) r

    t : α(succ n)  
    t = cong  w  incl w (succ n)) r

    w : p(under(succ n))  α(succ n)
    w = sym(cong b  min b (p(under(succ n)))) s)

  Claim₀ : p a    ∀(n : )  a  under n
  Claim₀ r n s = Lemma[b≡₁→b≠₀] r (Lemma s)
   where
    Lemma : a  under n  p a  
    Lemma t = trans (cong p t) (Dagger₀ n t)

  Claim₁ : p a    a  
  Claim₁ r = not-ℕ-is-∞ (Claim₀ r)

  Claim₂ : p a    ∀(n : )  p(under n)  
  Claim₂ r = Dagger₁(Claim₁ r)

  Claim₃ : p a    p   
  Claim₃ r = Lemma[x≡y→x≡z→z≡y] r (cong p (Claim₁ r))

  Lemma : p a    ∀(v : ℕ∞)  p v  
  Lemma r = ℕ∞-density (Claim₂ r) (Claim₃ r)


ℕ∞-omniscient :

  ∀(p : ℕ∞  )  ( \u  p u  )  (∀ u  p u  )

ℕ∞-omniscient p = two-equality-cases case₀ case₁
 where
  e :  \a  p a     u  p u  
  e = ℕ∞-searchable p

  a : ℕ∞
  a = ∃-witness e

  case₀ : p a    ( \u  p u  )  (∀ u  p u  )
  case₀ r = ∨-intro₀(∃-intro a r)

  case₁ : p a    ( \u  p u  )  (∀ u  p u  )
  case₁ r = ∨-intro₁(∃-elim e r)

\end{code}

There should be a better proof of the following. The idea is simple:
by the above development, u = under 0 if and only if incl u 0 ≡ 0, and
u ≡ under(n+1) if and only incl u n ≡ ₁ and incl u (n+1) ≡ ₀.

\begin{code}

finite-isolated :

 ∀(u : ℕ∞)  ∀(n : )  u  under n    u  under n

finite-isolated u 0 = two-equality-cases lemma₀ lemma₁
 where
  lemma₀ : isZero u  u  Zero  u  Zero
  lemma₀ r = in₀(isZero-equal-Zero r)
  lemma₁ : positive u  u  Zero  u  Zero
  lemma₁ r = in₁(contra-positive fact (Lemma[b≡₁→b≠₀] r))
    where fact : u  Zero  isZero u
          fact r = cong  u  incl u 0) r
finite-isolated u (succ n) = two-equality-cases lemma₀ lemma₁
 where
  lemma₀ :  incl u n    u  under(succ n)  u  under(succ n)
  lemma₀ r = in₁(contra-positive lemma (Lemma[b≡₀→b≠₁] r))
   where
    lemma : u  under(succ n)  incl u n  
    lemma r = trans (cong  v  incl v n) r) (under-diagonal₁ n)
  lemma₁ :  incl u n    u  under(succ n)  u  under(succ n)
  lemma₁ r = two-equality-cases lemma₁₀ lemma₁₁
   where
    lemma₁₀ :  incl u (succ n)    u  under(succ n)  u  under(succ n)
    lemma₁₀ s = in₀(Succ-criterion r s)
    lemma₁₁ :  incl u (succ n)    u  under(succ n)  u  under(succ n)
    lemma₁₁ s = in₁ (contra-positive lemma (Lemma[b≡₁→b≠₀] s))
     where
      lemma : u  under(succ n)  incl u (succ n)  
      lemma r = trans (cong  v  incl v (succ n)) r) (under-diagonal₀(succ n))

\end{code}