---
title:        Logic
author:       Martín Escardó and Ayberk Tosun
date-started: 2021-03-10
---

Based in part by the `Cubical.Functions.Logic` module UF.of
`agda/cubical`.

\begin{code}

{-# OPTIONS --safe --without-K #-}

module UF.Logic where

open import MLTT.Spartan
open import UF.Equiv
open import UF.FunExt
open import UF.PropTrunc
open import UF.Subsingletons
open import UF.Subsingletons-FunExt
open import UF.SubtypeClassifier
open import UF.SubtypeClassifier-Properties
open import UF.Sets

\end{code}

\section{Conjunction}

\begin{code}

module Conjunction where

 _∧_ : Ω 𝓤  Ω 𝓥  Ω (𝓤  𝓥)
 P  Q = (P holds × Q holds) , γ
  where
   γ = ×-is-prop (holds-is-prop P) (holds-is-prop Q)

 infixr 4 _∧_

\end{code}

Added by Martin Escardo 1st Nov 2023.

\begin{code}

 ∧-Intro :  (p : Ω 𝓤) (q : Ω 𝓥)  p holds  q holds  (p  q) holds
 ∧-Intro p q a b = (a , b)

 ∧-Elim-L : (p : Ω 𝓤) (q : Ω 𝓥)  (p  q) holds  p holds
 ∧-Elim-L p q = pr₁

 ∧-Elim-R :  (p : Ω 𝓤) (q : Ω 𝓥)  (p  q) holds  q holds
 ∧-Elim-R p q = pr₂

 module _ (pe : propext 𝓤) (fe : funext 𝓤 𝓤) where

  ∧-intro :  (p q : Ω 𝓤)  p    q    p  q  
  ∧-intro p q a b = holds-gives-equal-⊤ pe fe (p  q)
                     (∧-Intro p q
                       (equal-⊤-gives-holds p a)
                       (equal-⊤-gives-holds q b))

  ∧-elim-L :  (p q : Ω 𝓤)  p  q    p  
  ∧-elim-L p q c = holds-gives-equal-⊤ pe fe p
                    (∧-Elim-L p q (equal-⊤-gives-holds (p  q) c))

  ∧-elim-R :  (p q : Ω 𝓤)  p  q    q  
  ∧-elim-R p q c = holds-gives-equal-⊤ pe fe q
                    (∧-Elim-R p q (equal-⊤-gives-holds (p  q) c))

\end{code}

End of addition.

\section{Universal quantification}

\begin{code}

module Universal (fe : Fun-Ext) where

 ∀[꞉]-syntax : (I : 𝓤 ̇ )  (I  Ω 𝓥)  Ω (𝓤  𝓥)
 ∀[꞉]-syntax I P = ((i : I)  P i holds) , γ
  where
   γ : is-prop ((i : I)  P i holds)
   γ = Π-is-prop fe (holds-is-prop  P)


 ∀[]-syntax : {I : 𝓤 ̇ }  (I  Ω 𝓥)  Ω (𝓤  𝓥)
 ∀[]-syntax {I = I} P = ∀[꞉]-syntax I P

 infixr -1 ∀[꞉]-syntax
 infixr -1 ∀[]-syntax

 syntax ∀[꞉]-syntax I  i  e) =  i  I , e
 syntax ∀[]-syntax     i  e) =  i , e

 ∀₂[꞉]-syntax : (I : 𝓤 ̇ )→ (I  I  Ω 𝓥)  Ω (𝓤  𝓥)
 ∀₂[꞉]-syntax I P = ((i j : I)  P i j holds) , γ
  where
   γ : is-prop ((i j : I)  P i j holds)
   γ = Π₂-is-prop fe λ i j  holds-is-prop (P i j)

 infixr -1 ∀₂[꞉]-syntax

 syntax ∀₂[꞉]-syntax I  i j  e) =  i j  I , e

 ∀₃[꞉]-syntax : (I : 𝓤 ̇ )→ (I  I  I  Ω 𝓥)  Ω (𝓤  𝓥)
 ∀₃[꞉]-syntax I P =  i  I ,  j  I ,  k  I , P i j k

 infixr -1 ∀₃[꞉]-syntax

 syntax ∀₃[꞉]-syntax I  i j k  e) =  i j k  I , e

\end{code}

\section{Implication}

\begin{code}

module Implication (fe : Fun-Ext) where

 open Universal fe

 infixr 3 _⇒_

 _⇒_ : Ω 𝓤  Ω 𝓥  Ω (𝓤  𝓥)
 P  Q = (P holds  Q holds) , γ
  where
   γ : is-prop (P holds  Q holds)
   γ = Π-is-prop fe λ _  holds-is-prop Q

 open Conjunction

 _⇔_ : Ω 𝓤  Ω 𝓥  Ω (𝓤  𝓥)
 P  Q = (P  Q)  (Q  P)

 infixr 3 _⇔_

 biimplication-forward : (P : Ω 𝓤) (Q : Ω 𝓥)
                        (P  Q) holds  (P  Q) holds
 biimplication-forward P Q (φ , _) = φ

 biimplication-backward : (P : Ω 𝓤) (Q : Ω 𝓥)
                         (P  Q) holds  (Q  P) holds
 biimplication-backward P Q (_ , ψ) = ψ

 infix 3 ¬ₚ_

 ¬ₚ_ : Ω 𝓤  Ω 𝓤
 ¬ₚ_ {𝓤} P = _⇒_ P (𝟘 {𝓤} , 𝟘-is-prop)

\end{code}

Added by Martin Escardo 1st Nov 2023.

\begin{code}

 ⇔-gives-⇒ = biimplication-forward
 ⇔-gives-⇐ = biimplication-backward

 module _ (pe : propext 𝓤) where

  ⊤-⇔-neutral : (p : Ω 𝓤)  (p  )  p
  ⊤-⇔-neutral p =
   Ω-extensionality pe fe
    (h : (p   {𝓤}) holds)  ⇔-gives-⇐ p  h ⊤-holds)
    (h : p holds)   _  ⊤-holds) ,  _  h))

  ⇔-swap :  (p : Ω 𝓤) (q : Ω 𝓥)  (p  q) holds  (q  p) holds
  ⇔-swap p q (h , k) = (k , h)

  ⇔-swap' :  (p q : Ω 𝓤)  (p  q)    (q  p)  
  ⇔-swap' p q e = holds-gives-equal-⊤ pe fe (q  p)
                   (⇔-swap p q (equal-⊤-gives-holds (p  q) e))

  ⇔-sym :  (p q : Ω 𝓤)  (p  q)  (q  p)
  ⇔-sym p q = Ω-ext pe fe (⇔-swap' p q) (⇔-swap' q p)

  ⊤-⇔-neutral' : (p : Ω 𝓤)  (  p)  p
  ⊤-⇔-neutral' p = (  p =⟨ ⇔-sym  p 
                    p   =⟨ ⊤-⇔-neutral p 
                    p     )

  ⇔-refl : (p : Ω 𝓤)  (p  p)  
  ⇔-refl p = holds-gives-equal-⊤ pe fe
              (p  p)
              (id , id)

  =-gives-⇔  :  (p q : Ω 𝓤)   p  q  (p  q)  
  =-gives-⇔ p p refl = ⇔-refl p

  ⇔-gives-= :  (p q : Ω 𝓤)  (p  q)    p  q
  ⇔-gives-= p q e = Ω-extensionality pe fe f g
   where
    f : p holds  q holds
    f = ⇔-gives-⇒ p q (equal-⊤-gives-holds (p  q) e)

    g : q holds  p holds
    g = ⇔-gives-⇐ p q (equal-⊤-gives-holds (p  q) e)

  ⇔-equiv-to-= :  (p q : Ω 𝓤)  ((p  q)  )  (p  q)
  ⇔-equiv-to-= p q = qinveq
                       (⇔-gives-= p q)
                       (=-gives-⇔ p q ,
                        _  Ω-is-set fe pe _ _) ,
                        _  Ω-is-set fe pe _ _))

\end{code}

End of addition.

\section{Disjunction}

\begin{code}

module Disjunction (pt : propositional-truncations-exist) where

 open propositional-truncations-exist pt

 _∨_ : Ω 𝓤  Ω 𝓥  Ω (𝓤  𝓥)
 P  Q =  P holds + Q holds  , ∥∥-is-prop

 infix 3 _∨_

\end{code}

Added by Ayberk Tosun 2024-05-28.

\begin{code}

 ∨-elim : (P : Ω 𝓤) (Q : Ω 𝓥) (R : Ω 𝓦)
         (P holds  R holds)
         (Q holds  R holds)
         ((P  Q) holds  R holds)
 ∨-elim P Q R φ ψ = ∥∥-rec (holds-is-prop R) 
  where
    : P holds + Q holds  R holds
    (inl p) = φ p
    (inr q) = ψ q

\end{code}

\section{Truncation}

\begin{code}
module Truncation (pt : propositional-truncations-exist) where

  open PropositionalTruncation pt

  ∥_∥Ω : 𝓤 ̇  Ω 𝓤
   A ∥Ω =  A  , ∥∥-is-prop

  ∥∥Ω-rec : {X : 𝓤  ̇} {P : Ω 𝓥}  (X  P holds)   X   P holds
  ∥∥Ω-rec {𝓤} {𝓥} {X} {P} = ∥∥-rec (holds-is-prop P)

\end{code}

\section{Existential quantification}

\begin{code}

module Existential (pt : propositional-truncations-exist) where

 open Truncation pt

 ∃[꞉]-syntax : (I : 𝓤 ̇ )→ (I  𝓥 ̇ )→ Ω (𝓤  𝓥)
 ∃[꞉]-syntax I A =  Σ i  I , A i ∥Ω

 ∃[]-syntax : {I : 𝓤 ̇ }  (I  𝓥 ̇ )→ Ω (𝓤  𝓥)
 ∃[]-syntax {I = I} P = ∃[꞉]-syntax I P

 ∃ₚ[꞉]-syntax : (I : 𝓤 ̇ )→ (I  Ω 𝓥)→ Ω (𝓤  𝓥)
 ∃ₚ[꞉]-syntax I A = Ǝ i  I , A i holds

 infixr -1 ∃[꞉]-syntax
 infixr -1 ∃[]-syntax

 syntax ∃[꞉]-syntax I  i  e) = Ǝ i  I , e
 syntax ∃[]-syntax     i  e) = Ǝ i , e
 syntax ∃ₚ[꞉]-syntax I  i  e) = Ǝₚ i  I , e

\end{code}

\section{Negation of equality}

\begin{code}

module Negation-of-equality (fe : Fun-Ext) where

 _≢_ : {X : 𝓤 ̇ }  X  X  Ω 𝓤
 x  y = (x  y) , Π-is-prop fe  _  𝟘-is-prop)

\end{code}

\section{Equality}

The following was added by Ayberk Tosun on 2024-05-16.

\begin{code}

module Equality {X : 𝓤  ̇} (s : is-set X) where

 _=ₚ_ : X  X  Ω 𝓤
 _=ₚ_ x y = (x  y) , s

 infix 0 _=ₚ_

\end{code}

End of addition.

\section{A module for importing all combinators}

\begin{code}

module AllCombinators
        (pt : propositional-truncations-exist)
        (fe : Fun-Ext)
       where

 open Conjunction             public
 open Universal            fe public
 open Implication          fe public
 open Disjunction          pt public
 open Existential          pt public
 open Truncation           pt public
 open Negation-of-equality fe public

\end{code}