Martin Escardo
\begin{code}
{-# OPTIONS --safe --without-K #-}
module UF.PropTrunc where
open import MLTT.Plus-Properties
open import MLTT.Spartan
open import MLTT.Two-Properties
open import UF.Base
open import UF.Equiv
open import UF.FunExt
open import UF.Subsingletons
open import UF.Subsingletons-FunExt
\end{code}
We use the existence of propositional truncations as an
assumption. The following type collects the data that constitutes this
assumption.
\begin{code}
record propositional-truncations-exist : π€Ο where
field
β₯_β₯ : {π€ : Universe} β π€ Μ β π€ Μ
β₯β₯-is-prop : {π€ : Universe} {X : π€ Μ } β is-prop β₯ X β₯
β£_β£ : {π€ : Universe} {X : π€ Μ } β X β β₯ X β₯
β₯β₯-rec : {π€ π₯ : Universe} {X : π€ Μ } {P : π₯ Μ } β is-prop P β (X β P) β β₯ X β₯ β P
infix 0 β₯_β₯
infix 0 β£_β£
module PropositionalTruncation (pt : propositional-truncations-exist) where
open propositional-truncations-exist pt public
exit-β₯β₯ : {P : π€ Μ } β is-prop P β β₯ P β₯ β P
exit-β₯β₯ i = β₯β₯-rec i id
β₯β₯-induction : {X : π€ Μ } {P : β₯ X β₯ β π₯ Μ }
β ((s : β₯ X β₯) β is-prop (P s))
β ((x : X) β P β£ x β£)
β (s : β₯ X β₯) β P s
β₯β₯-induction {π€} {π₯} {X} {P} i f s = Ο' s
where
Ο : X β P s
Ο x = transport P (β₯β₯-is-prop β£ x β£ s) (f x)
Ο' : β₯ X β₯ β P s
Ο' = β₯β₯-rec (i s) Ο
is-singleton'-is-prop : {X : π€ Μ } β funext π€ π€ β is-prop (is-prop X Γ β₯ X β₯)
is-singleton'-is-prop fe = Ξ£-is-prop (being-prop-is-prop fe) (Ξ» _ β β₯β₯-is-prop)
the-singletons-are-the-inhabited-propositions
: {X : π€ Μ }
β is-singleton X β is-prop X Γ β₯ X β₯
the-singletons-are-the-inhabited-propositions {π€} {X} = f , g
where
f : is-singleton X β is-prop X Γ β₯ X β₯
f (x , Ο) = singletons-are-props (x , Ο) , β£ x β£
g : is-prop X Γ β₯ X β₯ β is-singleton X
g (i , s) = exit-β₯β₯ i s , i (exit-β₯β₯ i s)
β₯β₯-functor : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β β₯ X β₯ β β₯ Y β₯
β₯β₯-functor f = β₯β₯-rec β₯β₯-is-prop (Ξ» x β β£ f x β£)
β₯β₯-recβ : {π€ π₯ : Universe} {X : π€ Μ } {Y : π₯ Μ } {P : π¦ Μ }
β is-prop P β (X β Y β P) β β₯ X β₯ β β₯ Y β₯ β P
β₯β₯-recβ i f s t = β₯β₯-rec i (Ξ» x β β₯β₯-rec i (f x) t) s
β₯β₯-functorβ : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ }
β (X β Y β Z) β β₯ X β₯ β β₯ Y β₯ β β₯ Z β₯
β₯β₯-functorβ f s t = β₯β₯-rec β₯β₯-is-prop (Ξ» x β β₯β₯-functor (f x) t) s
β₯β₯-functorβ : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } {T : π£ Μ }
β (X β Y β Z β T) β β₯ X β₯ β β₯ Y β₯ β β₯ Z β₯ β β₯ T β₯
β₯β₯-functorβ f s t u = β₯β₯-rec β₯β₯-is-prop (Ξ» x β β₯β₯-functorβ (f x) t u) s
β : {X : π€ Μ } (Y : X β π₯ Μ ) β π€ β π₯ Μ
β Y = β₯ Ξ£ Y β₯
β-is-prop : {X : π€ Μ } {Y : X β π₯ Μ } β is-prop (β Y)
β-is-prop = β₯β₯-is-prop
Exists : {π€ π₯ : Universe} (X : π€ Μ ) (Y : X β π₯ Μ ) β π€ β π₯ Μ
Exists X Y = β Y
Β¬Exists : {π€ π₯ : Universe} (X : π€ Μ ) (Y : X β π₯ Μ ) β π€ β π₯ Μ
Β¬Exists X Y = Β¬ (β Y)
syntax Exists A (Ξ» x β b) = β x κ A , b
syntax Β¬Exists A (Ξ» x β b) = Β¬β x κ A , b
infixr -1 Exists
infixr -1 Β¬Exists
remove-truncation-inside-β : {X : π€ Μ } {Y : X β π₯ Μ }
β (β x κ X , β₯ Y x β₯)
β (β x κ X , Y x)
remove-truncation-inside-β =
β₯β₯-rec β-is-prop
(Ξ» (x , s) β β₯β₯-rec β-is-prop
(Ξ» y β β£ x , y β£) s)
Natβ : {X : π€ Μ } {A : X β π₯ Μ } {B : X β π¦ Μ } β Nat A B β β A β β B
Natβ ΞΆ = β₯β₯-functor (NatΞ£ ΞΆ)
_β¨_ : π€ Μ β π₯ Μ β π€ β π₯ Μ
P β¨ Q = β₯ P + Q β₯
β¨-is-prop : {P : π€ Μ } {Q : π₯ Μ } β is-prop (P β¨ Q)
β¨-is-prop = β₯β₯-is-prop
β¨-elim : {P : π€ Μ } {Q : π₯ Μ } {R : π¦ Μ }
β is-prop R
β (P β R)
β (Q β R)
β P β¨ Q β R
β¨-elim i f g = β₯β₯-rec i (cases f g)
β¨-functor : {P : π€ Μ } {Q : π₯ Μ } {R : π¦ Μ } {S : π£ Μ }
β (P β R)
β (Q β S)
β P β¨ Q β R β¨ S
β¨-functor f g = β₯β₯-functor (+functor f g)
β¨-flip : {P : π€ Μ } {Q : π₯ Μ }
β P β¨ Q β Q β¨ P
β¨-flip = β₯β₯-functor (cases inr inl)
left-fails-gives-right-holds : {P : π€ Μ } {Q : π₯ Μ }
β is-prop Q
β P β¨ Q
β Β¬ P
β Q
left-fails-gives-right-holds i d u =
β₯β₯-rec i (Ξ» d β Left-fails-gives-right-holds d u) d
right-fails-gives-left-holds : {P : π€ Μ } {Q : π₯ Μ }
β is-prop P
β P β¨ Q
β Β¬ Q β P
right-fails-gives-left-holds i d u =
β₯β₯-rec i (Ξ» d β Right-fails-gives-left-holds d u) d
pt-gdn : {X : π€ Μ } β β₯ X β₯ β β {π₯} (P : π₯ Μ ) β is-prop P β (X β P) β P
pt-gdn {π€} {X} s {π₯} P isp u = β₯β₯-rec isp u s
gdn-pt : {X : π€ Μ } β (β {π₯} (P : π₯ Μ ) β is-prop P β (X β P) β P) β β₯ X β₯
gdn-pt {π€} {X} Ο = Ο β₯ X β₯ β₯β₯-is-prop β£_β£
inhabited-is-nonempty : {X : π€ Μ } β β₯ X β₯ β ¬¬ X
inhabited-is-nonempty s = pt-gdn s π π-is-prop
uninhabited-is-empty : {X : π€ Μ } β Β¬ β₯ X β₯ β Β¬ X
uninhabited-is-empty u x = u β£ x β£
empty-is-uninhabited : {X : π€ Μ } β Β¬ X β Β¬ β₯ X β₯
empty-is-uninhabited v = β₯β₯-rec π-is-prop v
binary-choice : {X : π€ Μ } {Y : π₯ Μ } β β₯ X β₯ β β₯ Y β₯ β β₯ X Γ Y β₯
binary-choice s t = β₯β₯-rec
β₯β₯-is-prop
(Ξ» x β β₯β₯-rec β₯β₯-is-prop (Ξ» y β β£ x , y β£) t)
s
prop-is-equivalent-to-its-truncation : {X : π€ Μ } β is-prop X β β₯ X β₯ β X
prop-is-equivalent-to-its-truncation i =
logically-equivalent-props-are-equivalent β₯β₯-is-prop i (exit-β₯β₯ i) β£_β£
equiv-to-own-truncation-implies-prop : {X : π€ Μ } β X β β₯ X β₯ β is-prop X
equiv-to-own-truncation-implies-prop {π€} {X} e = equiv-to-prop e β₯β₯-is-prop
not-existsβ-implies-forallβ : {X : π€ Μ } (p : X β π)
β Β¬ (β x κ X , p x οΌ β)
β β (x : X) β p x οΌ β
not-existsβ-implies-forallβ p u x =
different-from-β-equal-β (not-Ξ£-implies-Ξ -not (u β β£_β£) x)
forallβ-implies-not-existsβ : {X : π€ Μ } (p : X β π)
β (β (x : X) β p x οΌ β)
β Β¬ (β x κ X , p x οΌ β)
forallβ-implies-not-existsβ {π€} {X} p Ξ± = β₯β₯-rec π-is-prop h
where
h : (Ξ£ x κ X , p x οΌ β) β π
h (x , r) = zero-is-not-one (r β»ΒΉ β Ξ± x)
forallβ-implies-not-existsβ : {X : π€ Μ } (p : X β π)
β (β (x : X) β p x οΌ β)
β Β¬ (β x κ X , p x οΌ β)
forallβ-implies-not-existsβ {π€} {X} p Ξ± = β₯β₯-rec π-is-prop h
where
h : (Ξ£ x κ X , p x οΌ β) β π
h (x , r) = one-is-not-zero (r β»ΒΉ β Ξ± x)
\end{code}
Added 19/12/2019 by Tom de Jong.
The following allows us to use Agda's do-notation with the β₯β₯-monad.
Note that the Kleisli laws hold trivially, because β₯ X β₯ is a proposition for
any type X.
It is quite convenient when dealing with multiple, successive β₯β₯-rec calls.
Agda's do-notation is powerful, because it can be combined with pattern
matching, i.e. if
w κ β₯ fiber f y β₯,
then
x , p β w
is allowed in the do-block.
(Note that in Haskell, you would write "return" for our function β£_β£.)
\begin{code}
_>>=_ : {X : π€ Μ } {Y : π₯ Μ } β β₯ X β₯ β (X β β₯ Y β₯) β β₯ Y β₯
s >>= f = β₯β₯-rec β₯β₯-is-prop f s
\end{code}
\begin{code}
infixr 0 _β¨_
\end{code}