\begin{code} {-# OPTIONS --safe --without-K #-} module MLTT.Sigma where open import MLTT.Universes \end{code} Using our conventions below, a sum can be written Σ {X} Y or as Σ x ꞉ X , Y x, or even Σ λ x → Y x when Agda can infer the type of the element x from the context. I prefer to use \ rather than λ in such cases. \begin{code} open import MLTT.Sigma-Type renaming (_,_ to infixr 4 _,_) public open Σ public Sigma : {𝓤 𝓥 : Universe} (X : 𝓤 ̇ ) (Y : X → 𝓥 ̇ ) → 𝓤 ⊔ 𝓥 ̇ Sigma _ Y = Σ Y syntax Sigma A (λ x → b) = Σ x ꞉ A , b infixr -1 Sigma _×_ : 𝓤 ̇ → 𝓥 ̇ → 𝓤 ⊔ 𝓥 ̇ X × Y = Σ x ꞉ X , Y uncurry : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {Z : 𝓦 ̇ } → ((x : X) → Y x → Z) → Σ Y → Z uncurry f (x , y) = f x y curry : {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } {Z : 𝓦 ̇ } → (Σ Y → Z) → ((x : X) → Y x → Z) curry f x y = f (x , y) ×functor : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } {A : 𝓦 ̇ } {B : 𝓣 ̇ } → (X → A) → (Y → B) → X × Y → A × B ×functor f g (x , y) = f x , g y \end{code} As usual in type theory, binary products are particular cases of dependent sums. Fixities: \begin{code} infixr 2 _×_ \end{code}