Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg and Chuangjie Xu
September 2025
This file follows the definitions, equations, lemmas, propositions, theorems and
remarks of our paper
Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg and Chuangjie Xu
Constructive Ordinal Exponentiation
This paper is a journal version of the paper "Ordinal Exponentiation in Homotopy
Type Theory", whose definitions etc are listed in Ordinals.Exponentiation.Paper.
See also Ordinals.Exponentiation.index for an overview of the relevant files.
\begin{code}
{-# OPTIONS --safe --without-K --exact-split --lossy-unification #-}
\end{code}
Our global assumptions are univalence, the existence of propositional
truncations and set replacement (equivalently, small set quotients).
Function extensionality can be derived from univalence.
\begin{code}
open import UF.Univalence
open import UF.PropTrunc
open import UF.Size
module Ordinals.Exponentiation.PaperJournal
(ua : Univalence)
(pt : propositional-truncations-exist)
(sr : Set-Replacement pt)
where
open import MLTT.Spartan
open import Notation.General
open import UF.FunExt
open import UF.UA-FunExt
private
fe : FunExt
fe = Univalence-gives-FunExt ua
fe' : Fun-Ext
fe' {𝓤} {𝓥} = fe 𝓤 𝓥
open import MLTT.List
open import UF.ClassicalLogic
open import UF.DiscreteAndSeparated
open import UF.ImageAndSurjection pt
open import UF.Subsingletons
open PropositionalTruncation pt
open import Ordinals.AdditionProperties ua
open import Ordinals.Arithmetic fe
open import Ordinals.ArithmeticReflection ua pt sr
open import Ordinals.BoundedOperations ua pt sr
open import Ordinals.Equivalence
open import Ordinals.Maps
open import Ordinals.MultiplicationProperties ua
open import Ordinals.Notions
open import Ordinals.OrdinalOfOrdinals ua
open import Ordinals.OrdinalOfOrdinalsSuprema ua
open suprema pt sr
open import Ordinals.Propositions ua
open import Ordinals.Type
open import Ordinals.Underlying
open import Ordinals.Exponentiation.DecreasingList ua pt
open import Ordinals.Exponentiation.DecreasingListProperties-Concrete ua pt sr
open import Ordinals.Exponentiation.Grayson ua pt
open import Ordinals.Exponentiation.PropertiesViaTransport ua pt sr
open import Ordinals.Exponentiation.RelatingConstructions ua pt sr
open import Ordinals.Exponentiation.Specification ua pt sr
open import Ordinals.Exponentiation.Supremum ua pt sr
open import Ordinals.Exponentiation.Taboos ua pt sr
open import Ordinals.Exponentiation.TrichotomousLeastElement ua pt
\end{code}
To match the terminology of the paper, we put
\begin{code}
has-decidable-equality = is-discrete
is-ordinal-equiv = is-order-equiv
\end{code}
Section 2. Ordinals in a Constructive Setting
\begin{code}
Lemma-1 : (α β : Ordinal 𝓤) (f : ⟨ α ⟩ → ⟨ β ⟩)
→ (is-simulation α β f → (a : ⟨ α ⟩) → α ↓ a = β ↓ f a)
× (is-simulation α β f → left-cancellable f × is-order-reflecting α β f)
× (is-simulation α β f × is-surjection f ↔ is-ordinal-equiv α β f)
Lemma-1 α β f = [1] , [2] , [3]
where
[1] : is-simulation α β f → (a : ⟨ α ⟩) → α ↓ a = β ↓ f a
[1] f-sim a = simulations-preserve-↓ α β (f , f-sim) a
[2] : is-simulation α β f → left-cancellable f × is-order-reflecting α β f
[2] f-sim = simulations-are-lc α β f f-sim
, simulations-are-order-reflecting α β f f-sim
[3] : is-simulation α β f × is-surjection f ↔ is-ordinal-equiv α β f
[3] = (λ (f-sim , f-surj) → surjective-simulations-are-order-equivs
pt fe α β f f-sim f-surj)
, (λ f-equiv → order-equivs-are-simulations α β f f-equiv
, equivs-are-surjections
(order-equivs-are-equivs α β f-equiv))
Eq-1 : (I : 𝓤 ̇ ) (F : I → Ordinal 𝓤) (y : ⟨ sup F ⟩)
→ ∃ i ꞉ I , Σ x ꞉ ⟨ F i ⟩ ,
(y = [ F i , sup F ]⟨ sup-is-upper-bound F i ⟩ x)
× (sup F ↓ y = F i ↓ x)
Eq-1 I F y = ∥∥-functor h
(initial-segment-of-sup-is-initial-segment-of-some-component F y)
where
h : (Σ i ꞉ I , Σ x ꞉ ⟨ F i ⟩ , sup F ↓ y = F i ↓ x)
→ Σ i ꞉ I , Σ x ꞉ ⟨ F i ⟩ ,
(y = [ F i , sup F ]⟨ sup-is-upper-bound F i ⟩ x)
× (sup F ↓ y = F i ↓ x)
h (i , x , p) = i , x , q , p
where
[i,x] = [ F i , sup F ]⟨ sup-is-upper-bound F i ⟩ x
q : y = [i,x]
q = ↓-lc (sup F) y [i,x] (p ∙ (initial-segment-of-sup-at-component F i x) ⁻¹)
Eq-2 : (α β : Ordinal 𝓤)
→ ((a : ⟨ α ⟩) → (α +ₒ β) ↓ inl a = α ↓ a)
× ((b : ⟨ β ⟩) → (α +ₒ β) ↓ inr b = α +ₒ (β ↓ b))
Eq-2 α β = (λ a → (+ₒ-↓-left a) ⁻¹) , (λ b → (+ₒ-↓-right b) ⁻¹)
Eq-3 : (α β : Ordinal 𝓤) (a : ⟨ α ⟩) (b : ⟨ β ⟩)
→ (α ×ₒ β) ↓ (a , b) = α ×ₒ (β ↓ b) +ₒ (α ↓ a)
Eq-3 α β a b = ×ₒ-↓ α β
Lemma-2 : (α β γ : Ordinal 𝓤)
→ β ⊴ γ
→ α +ₒ β ⊴ α +ₒ γ
× α ×ₒ β ⊴ α ×ₒ γ
Lemma-2 α β γ l = +ₒ-right-monotone-⊴ α β γ l , ×ₒ-right-monotone-⊴ α β γ l
Lemma-3 : (α : Ordinal 𝓤)
→ ((I : 𝓤 ̇ ) (F : I → Ordinal 𝓤) → α ×ₒ sup F = sup (λ i → α ×ₒ F i))
Lemma-3 α = ×ₒ-preserves-suprema pt sr α
Lemma-4 : (β : Ordinal 𝓤) → β = sup (λ b → (β ↓ b) +ₒ 𝟙ₒ)
Lemma-4 = supremum-of-successors-of-initial-segments pt sr
Proposition-5 : (α : Ordinal 𝓤)
→ (α ×ₒ 𝟘ₒ {𝓥} = 𝟘ₒ)
× ((β : Ordinal 𝓤) → α ×ₒ (β +ₒ 𝟙ₒ) = α ×ₒ β +ₒ α)
× ((I : 𝓤 ̇ ) (β : I → Ordinal 𝓤)
→ α ×ₒ sup β = sup (λ i → α ×ₒ β i))
× ((α β : Ordinal 𝓤) → α ×ₒ β = sup (λ b → (α ×ₒ (β ↓ b)) +ₒ α))
× (∃! _⊗_ ꞉ (Ordinal 𝓤 → Ordinal 𝓤 → Ordinal 𝓤) ,
((α β : Ordinal 𝓤) → α ⊗ (β +ₒ 𝟙ₒ) = (α ⊗ β) +ₒ α)
× ((α : Ordinal 𝓤) (I : 𝓤 ̇ ) (β : I → Ordinal 𝓤)
→ α ⊗ (sup β) = sup (λ i → α ⊗ β i)))
Proposition-5 α =
×ₒ-𝟘ₒ-right α
, ×ₒ-successor α
, ×ₒ-preserves-suprema pt sr α
, ×ₒ-recursive-equation pt sr
, ×ₒ-is-uniquely-specified pt sr
Lemma-6 : (α : Ordinal 𝓤) (I : 𝓤 ̇ ) (β : I → Ordinal 𝓤)
→ α +ₒ sup β = extended-sup (λ i → α +ₒ β i) α
Lemma-6 = +ₒ-preserves-suprema-up-to-join pt sr
Proposition-7 : (α : Ordinal 𝓤)
→ (α +ₒ 𝟘ₒ = α)
× ((β : Ordinal 𝓤) → α +ₒ (β +ₒ 𝟙ₒ) = (α +ₒ β) +ₒ 𝟙ₒ)
× ((I : 𝓤 ̇ ) (β : I → Ordinal 𝓤)
→ α +ₒ sup β = extended-sup (λ i → α +ₒ β i) α)
× ((α β : Ordinal 𝓤)
→ α +ₒ β = extended-sup (λ b → α +ₒ (β ↓ b) +ₒ 𝟙ₒ) α)
× (∃! _⊕_ ꞉ (Ordinal 𝓤 → Ordinal 𝓤 → Ordinal 𝓤) ,
((α β : Ordinal 𝓤) → α ⊕ (β +ₒ 𝟙ₒ) = (α ⊕ β) +ₒ 𝟙ₒ)
× ((α : Ordinal 𝓤) (I : 𝓤 ̇ ) (β : I → Ordinal 𝓤)
→ α ⊕ (sup β) = extended-sup (λ i → α ⊕ β i) α))
Proposition-7 α =
𝟘ₒ-right-neutral α
, +ₒ-commutes-with-successor α
, +ₒ-preserves-suprema-up-to-join pt sr α
, +ₒ-recursive-equation pt sr
, +ₒ-is-uniquely-specified pt sr
Eq-double-dagger : (Ordinal 𝓤 → Ordinal 𝓤 → Ordinal 𝓤) → 𝓤 ⁺ ̇
Eq-double-dagger = exp-full-specification
Lemma-8 : (α : Ordinal 𝓤) (exp-α : Ordinal 𝓤 → Ordinal 𝓤)
→ exp-specification-zero α exp-α
→ exp-specification-succ α exp-α
→ exp-specification-sup α exp-α
→ (exp-α 𝟙ₒ = α)
× (exp-α 𝟚ₒ = α ×ₒ α)
× ((α ≠ 𝟘ₒ) → is-monotone (OO 𝓤) (OO 𝓤) exp-α)
Lemma-8 α exp-α exp-spec-zero exp-spec-succ exp-spec-sup =
𝟙ₒ-neutral-exp α exp-α exp-spec-zero exp-spec-succ
, exp-𝟚ₒ-is-×ₒ α exp-α exp-spec-zero exp-spec-succ
, (λ α-nonzero → is-monotone-if-continuous exp-α (exp-spec-sup α-nonzero))
Proposition-9
: (Σ exp ꞉ (Ordinal 𝓤 → Ordinal 𝓤 → Ordinal 𝓤) , exp-full-specification exp)
↔ EM 𝓤
Proposition-9 =
(λ (exp , (exp-zero , exp-succ , exp-sup)) →
exponentiation-defined-everywhere-implies-EM
exp
exp-zero
exp-succ
(λ α → pr₁ (exp-sup α)))
, EM-gives-full-exponentiation
Eq-double-dagger' : (Ordinal 𝓤 → Ordinal 𝓤 → Ordinal 𝓤) → 𝓤 ⁺ ̇
Eq-double-dagger' {𝓤} exp =
((α : Ordinal 𝓤) → 𝟙ₒ {𝓤} ⊴ α → exp-specification-succ α (exp α))
× ((α : Ordinal 𝓤) → 𝟙ₒ {𝓤} ⊴ α → exp-specification-sup-strong α (exp α))
\end{code}
Section 3. Abstract Algebraic Exponentiation
\begin{code}
Definition-10 : Ordinal 𝓤 → Ordinal 𝓤 → Ordinal 𝓤
Definition-10 α β = α ^ₒ β
Proposition-11 : (α β : Ordinal 𝓤)
(a : ⟨ α ⟩) (b : ⟨ β ⟩) (e : ⟨ α ^ₒ (β ↓ b) ⟩)
→ α ^ₒ β ↓ ×ₒ-to-^ₒ α β {b} (e , a)
= α ^ₒ (β ↓ b) ×ₒ (α ↓ a) +ₒ (α ^ₒ (β ↓ b) ↓ e)
Proposition-11 α β a b e = ^ₒ-↓-×ₒ-to-^ₒ α β
Proposition-12 : (α β γ : Ordinal 𝓤)
→ (β ⊴ γ → α ^ₒ β ⊴ α ^ₒ γ)
× (𝟙ₒ ⊲ α → β ⊲ γ → α ^ₒ β ⊲ α ^ₒ γ)
Proposition-12 α β γ = ^ₒ-monotone-in-exponent α β γ
, ^ₒ-order-preserving-in-exponent α β γ
Theorem-13 : (α : Ordinal 𝓤) → 𝟙ₒ ⊴ α
→ exp-specification-zero α (α ^ₒ_)
× exp-specification-succ α (α ^ₒ_)
× exp-specification-sup-strong α (α ^ₒ_)
× exp-specification-sup α (α ^ₒ_)
Theorem-13 {𝓤} α α-pos = ^ₒ-satisfies-zero-specification {𝓤} {𝓤} α
, ^ₒ-satisfies-succ-specification {𝓤} {𝓤} α α-pos
, ^ₒ-satisfies-strong-sup-specification α
, ^ₒ-satisfies-sup-specification α
Proposition-14 : {𝓤 𝓥 : Universe} (α : Ordinal 𝓤) (β γ : Ordinal 𝓥)
→ α ^ₒ (β +ₒ γ) = (α ^ₒ β) ×ₒ (α ^ₒ γ)
Proposition-14 = ^ₒ-by-+ₒ
Proposition-15 : {𝓤 𝓥 : Universe} (α : Ordinal 𝓤) (β γ : Ordinal 𝓥)
→ (α ^ₒ β) ^ₒ γ = α ^ₒ (β ×ₒ γ)
Proposition-15 α β γ = (^ₒ-by-×ₒ α β γ) ⁻¹
\end{code}
Section 4. Decreasing Lists: A Constructive Formulation
of Sierpiński's Definition
\begin{code}
Definition-16 : (α : Ordinal 𝓤) (β : Ordinal 𝓥) → 𝓤 ⊔ 𝓥 ̇
Definition-16 α β = DecrList₂ α β
Remark-17 : (α : Ordinal 𝓤) (β : Ordinal 𝓥)
((l , p) (l' , q) : DecrList₂ α β)
→ l = l'
→ (l , p) = (l' , q)
Remark-17 α β _ _ = to-DecrList₂-= α β
Proposition-18-i
: EM 𝓤
→ ((α : Ordinal 𝓤) (x : ⟨ α ⟩) → is-least α x
→ is-well-order (subtype-order α (λ - → x ≺⟨ α ⟩ -)))
Proposition-18-i = EM-implies-subtype-of-positive-elements-an-ordinal
Proposition-18-ii
: ((α : Ordinal (𝓤 ⁺⁺)) (x : ⟨ α ⟩) → is-least α x
→ is-well-order (subtype-order α (λ - → x ≺⟨ α ⟩ -)))
→ EM 𝓤
Proposition-18-ii = subtype-of-positive-elements-an-ordinal-implies-EM
Lemma-19-i : (α : Ordinal 𝓤)
→ has-trichotomous-least-element α ↔ is-decomposable-into-one-plus α
Lemma-19-i α = trichotomous-least-to-decomposable α
, decomposable-to-trichotomous-least α
Lemma-19-ii : (α : Ordinal 𝓤)
((a₀ , a₀-tri) : has-trichotomous-least-element α)
(β : Ordinal 𝓤)
→ α = 𝟙ₒ +ₒ β
→ (β = α ⁺[ a₀ , a₀-tri ])
× (⟨ α ⁺[ a₀ , a₀-tri ] ⟩ = (Σ a ꞉ ⟨ α ⟩ , a₀ ≺⟨ α ⟩ a))
Lemma-19-ii α (a₀ , a₀-tri) β p =
+ₒ-left-cancellable 𝟙ₒ β (α ⁺[ a₀ , a₀-tri ]) (p ⁻¹ ∙ q)
, ⁺-is-subtype-of-positive-elements α (a₀ , a₀-tri)
where
q : α = 𝟙ₒ +ₒ α ⁺[ a₀ , a₀-tri ]
q = α ⁺[ a₀ , a₀-tri ]-part-of-decomposition
Definition-20 : (α : Ordinal 𝓤) (β : Ordinal 𝓥)
→ has-trichotomous-least-element α
→ Ordinal (𝓤 ⊔ 𝓥)
Definition-20 α β h = exponentiationᴸ α h β
module fixed-assumptions-1
(α : Ordinal 𝓤)
(h : has-trichotomous-least-element α)
where
α⁺ = α ⁺[ h ]
NB[α⁺-eq] : α = 𝟙ₒ +ₒ α⁺
NB[α⁺-eq] = α ⁺[ h ]-part-of-decomposition
exp[α,_] : Ordinal 𝓦 → Ordinal (𝓤 ⊔ 𝓦)
exp[α, γ ] = exponentiationᴸ α h γ
Proposition-21 : (β : Ordinal 𝓥) → has-trichotomous-least-element exp[α, β ]
Proposition-21 β = exponentiationᴸ-has-trichotomous-least-element α h β
Lemma-22-i : (β : Ordinal 𝓥) (γ : Ordinal 𝓦)
(f : ⟨ β ⟩ → ⟨ γ ⟩)
→ is-order-preserving β γ f
→ Σ f̅ ꞉ (⟨ exp[α, β ] ⟩ → ⟨ exp[α, γ ] ⟩)
, is-order-preserving exp[α, β ] exp[α, γ ] f̅
Lemma-22-i β γ f f-order-pres =
expᴸ-map α⁺ β γ f f-order-pres
, expᴸ-map-is-order-preserving α⁺ β γ f f-order-pres
Lemma-22-ii : (β : Ordinal 𝓥) (γ : Ordinal 𝓦)
→ β ⊴ γ → exp[α, β ] ⊴ exp[α, γ ]
Lemma-22-ii β γ (f , (f-init-seg , f-order-pres)) =
expᴸ-map α⁺ β γ f f-order-pres
, expᴸ-map-is-simulation α⁺ β γ f f-order-pres f-init-seg
module fixed-assumptions-2
(α : Ordinal 𝓤)
(h : has-trichotomous-least-element α)
(β : Ordinal 𝓥)
where
open fixed-assumptions-1 α h
Eq-4 : (b : ⟨ β ⟩) → exp[α, β ↓ b ] ⊴ exp[α, β ]
Eq-4 = expᴸ-segment-inclusion-⊴ α⁺ β
ι = expᴸ-segment-inclusion α⁺ β
ι-list = expᴸ-segment-inclusion-list α⁺ β
Eq-5 : (a : ⟨ α ⁺[ h ] ⟩) (b : ⟨ β ⟩)
→ (l : ⟨ exp[α, β ] ⟩)
→ is-decreasing-pr₂ α⁺ β ((a , b) ∷ pr₁ l)
→ ⟨ exponentiationᴸ α h (β ↓ b) ⟩
Eq-5 a b l δ = expᴸ-tail α⁺ β a b (pr₁ l) δ
τ = expᴸ-tail α⁺ β
Eq-5-addendum-i
: (a : ⟨ α⁺ ⟩) (b : ⟨ β ⟩)
(l₁ l₂ : List ⟨ α⁺ ×ₒ β ⟩)
(δ₁ : is-decreasing-pr₂ α⁺ β ((a , b) ∷ l₁))
(δ₂ : is-decreasing-pr₂ α⁺ β ((a , b) ∷ l₂))
→ l₁ ≺⟨List (α⁺ ×ₒ β) ⟩ l₂
→ τ a b l₁ δ₁ ≺⟨ exp[α, β ↓ b ] ⟩ τ a b l₂ δ₂
Eq-5-addendum-i a b l₁ l₂ δ₁ δ₂ = expᴸ-tail-is-order-preserving α⁺ β a b δ₁ δ₂
Eq-5-addendum-ii : (a : ⟨ α⁺ ⟩) (b : ⟨ β ⟩)
(l : List ⟨ α⁺ ×ₒ β ⟩)
{δ : is-decreasing-pr₂ α⁺ β ((a , b) ∷ l)}
{ε : is-decreasing-pr₂ α⁺ β l}
→ ι b (τ a b l δ) = (l , ε)
Eq-5-addendum-ii a b = expᴸ-tail-section-of-expᴸ-segment-inclusion α⁺ β a b
Eq-5-addendum-iii : (a : ⟨ α⁺ ⟩) (b : ⟨ β ⟩)
(l : List ⟨ α⁺ ×ₒ (β ↓ b) ⟩)
{δ : is-decreasing-pr₂ α⁺ (β ↓ b) l}
{ε : is-decreasing-pr₂ α⁺ β ((a , b) ∷ ι-list b l)}
→ τ a b (ι-list b l) ε = (l , δ)
Eq-5-addendum-iii a b l {δ} =
expᴸ-segment-inclusion-section-of-expᴸ-tail α⁺ β a b l δ
Proposition-23-i
: (a : ⟨ α⁺ ⟩) (b : ⟨ β ⟩) (l : List ⟨ α⁺ ×ₒ β ⟩)
(δ : is-decreasing-pr₂ α⁺ β ((a , b) ∷ l))
→ exp[α, β ] ↓ ((a , b ∷ l) , δ)
= exp[α, β ↓ b ] ×ₒ (𝟙ₒ +ₒ (α⁺ ↓ a)) +ₒ (exp[α, β ↓ b ] ↓ τ a b l δ)
Proposition-23-i = expᴸ-↓-cons α⁺ β
Proposition-23-ii
: (a : ⟨ α⁺ ⟩) (b : ⟨ β ⟩) (l : ⟨ exp[α, β ↓ b ] ⟩)
→ exp[α, β ] ↓ extended-expᴸ-segment-inclusion α⁺ β b l a
= exp[α, β ↓ b ] ×ₒ (𝟙ₒ +ₒ (α⁺ ↓ a)) +ₒ (exp[α, β ↓ b ] ↓ l)
Proposition-23-ii = expᴸ-↓-cons' α⁺ β
module fixed-assumptions-3
(α : Ordinal 𝓤)
(h : has-trichotomous-least-element α)
(β : Ordinal 𝓥)
where
open fixed-assumptions-1 α h
Theorem-24 : exp-specification-zero α (λ - → exp[α, - ])
× exp-specification-succ α (λ - → exp[α, - ])
× exp-specification-sup-strong α (λ - → exp[α, - ])
× exp-specification-sup α (λ - → exp[α, - ])
Theorem-24 = expᴸ-satisfies-zero-specification {𝓤} {𝓤} α⁺
, transport⁻¹
(λ - → exp-specification-succ - (λ - → exp[α, - ]))
NB[α⁺-eq]
(expᴸ-satisfies-succ-specification {𝓤} α⁺)
, transport⁻¹
(λ - → exp-specification-sup-strong - (λ - → exp[α, - ]))
NB[α⁺-eq]
(expᴸ-satisfies-strong-sup-specification {𝓤} α⁺)
, transport⁻¹
(λ - → exp-specification-sup - (λ - → exp[α, - ]))
NB[α⁺-eq]
(expᴸ-satisfies-sup-specification {𝓤} α⁺)
Proposition-25 : (β γ : Ordinal 𝓥)
→ exp[α, β +ₒ γ ] = exp[α, β ] ×ₒ exp[α, γ ]
Proposition-25 = expᴸ-by-+ₒ α⁺
Proposition-26 : (β : Ordinal 𝓥)
→ has-decidable-equality ⟨ α ⟩
→ has-decidable-equality ⟨ β ⟩
→ has-decidable-equality ⟨ exp[α, β ] ⟩
Proposition-26 β = exponentiationᴸ-preserves-discreteness α β h
private
tri-least : (α : Ordinal 𝓤)
→ has-least α
→ is-trichotomous α
→ has-trichotomous-least-element α
tri-least α (⊥ , ⊥-is-least) t =
⊥ ,
is-trichotomous-and-least-implies-is-trichotomous-least α ⊥ (t ⊥) ⊥-is-least
Proposition-27
: (α : Ordinal 𝓤) (β : Ordinal 𝓥) (h : has-least α)
→ (t : is-trichotomous α)
→ is-trichotomous β
→ is-trichotomous (exponentiationᴸ α (tri-least α h t) β)
Proposition-27 = exponentiationᴸ-preserves-trichotomy
\end{code}
Section 5. Abstract and Concrete Exponentiation
\begin{code}
Theorem-28 : (α β : Ordinal 𝓤) (h : has-trichotomous-least-element α)
→ α ^ₒ β = exponentiationᴸ α h β
Theorem-28 α β h = (exponentiation-constructions-agree α β h) ⁻¹
Corollary-29-i : (α β : Ordinal 𝓤)
→ has-trichotomous-least-element α
→ has-decidable-equality ⟨ α ⟩
→ has-decidable-equality ⟨ β ⟩
→ has-decidable-equality ⟨ α ^ₒ β ⟩
Corollary-29-i =
^ₒ-preserves-discreteness-for-base-with-trichotomous-least-element
Corollary-29-ii : (α β : Ordinal 𝓤)
→ has-least α
→ is-trichotomous α
→ is-trichotomous β
→ is-trichotomous (α ^ₒ β)
Corollary-29-ii = ^ₒ-preserves-trichotomy
module fixed-assumptions-4
(α β γ : Ordinal 𝓤)
(h : has-trichotomous-least-element α)
where
private
h' : has-trichotomous-least-element (exponentiationᴸ α h β)
h' = exponentiationᴸ-has-trichotomous-least-element α h β
Corollary-30
: exponentiationᴸ α h (β ×ₒ γ) = exponentiationᴸ (exponentiationᴸ α h β) h' γ
Corollary-30 = exponentiationᴸ-by-×ₒ α h β γ
module fixed-assumptions-5
(α : Ordinal 𝓤)
where
open denotations α
Definition-31 : (β : Ordinal 𝓥) → DecrList₂ α β → ⟨ α ^ₒ β ⟩
Definition-31 β l = ⟦ l ⟧⟨ β ⟩
Proposition-33 : (β : Ordinal 𝓥) → is-surjection (λ l → ⟦ l ⟧⟨ β ⟩)
Proposition-33 = ⟦⟧-is-surjection
module fixed-assumptions-6
(α : Ordinal 𝓤)
(h : has-trichotomous-least-element α)
(β : Ordinal 𝓤)
where
open denotations
private
α⁺ = α ⁺[ h ]
NB : α = 𝟙ₒ +ₒ α⁺
NB = α ⁺[ h ]-part-of-decomposition
con-to-abs : ⟨ expᴸ[𝟙+ α⁺ ] β ⟩ → ⟨ (𝟙ₒ +ₒ α⁺) ^ₒ β ⟩
con-to-abs = induced-map α⁺ β
Lemma-35 : con-to-abs ∼ denotation' α⁺ β
Lemma-36 : denotation (𝟙ₒ +ₒ α⁺) β ∼ denotation' α⁺ β ∘ normalize α⁺ β
Theorem-34 : denotation (𝟙ₒ +ₒ α⁺) β ∼ con-to-abs ∘ (normalize α⁺ β)
Theorem-34 l = (Lemma-36 l) ∙ (Lemma-35 (normalize α⁺ β l) ⁻¹)
Lemma-35 = induced-map-is-denotation' α⁺ β
Lemma-36 = denotations-are-related-via-normalization α⁺ β
Definition-38 : (α β : Ordinal 𝓤) → 𝓤 ̇
Definition-38 α β = GraysonList (underlying-order α) (underlying-order β)
Proposition-39-i
: EM 𝓤
→ (α β : Ordinal 𝓤)
→ is-well-order (Grayson-order (underlying-order α) (underlying-order β))
Proposition-39-i = EM-implies-GraysonList-is-ordinal
Proposition-39-ii
: ((α β : Ordinal (𝓤 ⁺⁺))
→ has-least α
→ is-well-order (Grayson-order (underlying-order α) (underlying-order β)))
→ EM 𝓤
Proposition-39-ii = GraysonList-always-ordinal-implies-EM
\end{code}
Section 6. Abstract Cancellation Arithmetic
\begin{code}
Lemma-40 : (α β : Ordinal 𝓤)
→ β ⊲ α → ¬ (Σ f ꞉ (⟨ α ⟩ → ⟨ β ⟩) , is-order-preserving α β f)
Lemma-40 α β l 𝕗 = order-preserving-gives-not-⊲ α β 𝕗 l
Lemma-41 : (α β γ : Ordinal 𝓤)
→ (α ⊴ β → α ≤ᶜˡ β)
× (α ⊲ β → α <ᶜˡ β)
× (α <ᶜˡ β → α ≤ᶜˡ β)
× (α <ᶜˡ β → β ≤ᶜˡ γ → α <ᶜˡ γ)
× (α ≤ᶜˡ β → β <ᶜˡ γ → α <ᶜˡ γ)
× ¬ (α <ᶜˡ α)
Lemma-41 α β γ =
⊴-gives-≤ᶜˡ α β
, ⊲-gives-<ᶜˡ α β
, <ᶜˡ-gives-≤ᶜˡ α β
, <ᶜˡ-≤ᶜˡ-to-<ᶜˡ α β γ
, ≤ᶜˡ-<ᶜˡ-to-<ᶜˡ α β γ
, <ᶜˡ-irrefl α
Definition-42 : (Ordinal 𝓤 → Ordinal 𝓤) → 𝓤 ⁺ ̇
Definition-42 {𝓤} F = Σ S ꞉ (Ordinal 𝓤 → Ordinal 𝓤) ,
Σ Z ꞉ Ordinal 𝓤 ,
((β : Ordinal 𝓤) → F (β +ₒ 𝟙ₒ) = S (F β))
× ((I : 𝓤 ̇ ) (L : I → Ordinal 𝓤)
→ F (sup L) = extended-sup (F ∘ L) Z)
Remark-43 : (F : Ordinal 𝓤 → Ordinal 𝓤)
→ ((S , Z , _) : Definition-42 F)
→ F = canonical-spec-by-cases S Z
Remark-43 F (S , Z , F-succ , F-sup) =
dfunext fe' (framework.F-unique F S Z F-succ F-sup)
module fixed-assumptions-7
(F : Ordinal 𝓤 → Ordinal 𝓤)
(S : Ordinal 𝓤 → Ordinal 𝓤)
(Z : Ordinal 𝓤)
(F-succ : (β : Ordinal 𝓤) → F (β +ₒ 𝟙ₒ) = S (F β))
(F-sup : (I : 𝓤 ̇ ) (L : I → Ordinal 𝓤)
→ F (sup L) = extended-sup (F ∘ L) Z)
where
Assumption-1 : 𝓤 ⁺ ̇
Assumption-1 = framework.Assumption-1 F S Z F-succ F-sup
Assumption-2 : 𝓤 ⁺ ̇
Assumption-2 = framework.Assumption-2 F S Z F-succ F-sup
Assumption-3 : 𝓤 ⁺ ̇
Assumption-3 = framework.Assumption-3 F S Z F-succ F-sup
open framework F S Z F-succ F-sup
hiding (Assumption-1; Assumption-2; Assumption-3)
Lemma-44 : (β γ : Ordinal 𝓤) → β ⊴ γ → F β ⊴ F γ
Lemma-44 = F-preserves-⊴
Lemma-45 : Assumption-2 → (β γ : Ordinal 𝓤) → β ⊲ γ → F β ⊲ F γ
Lemma-45 = F-preserves-⊲
Lemma-46 : (β γ : Ordinal 𝓤)
→ F 𝟘ₒ ⊴ β
→ β ⊲ F γ
→ Assumption-1
→ ∃ γ' ꞉ Ordinal 𝓤 , (γ' ⊲ γ) × (F γ' ⊴ β) × (β ⊲ F (γ' +ₒ 𝟙ₒ))
Lemma-46 β γ l₀ l₁ asm-1 = F-tightening-bounds asm-1 β l₀ γ l₁
open uo-order
Lemma-47 : (A : 𝓤 ̇ )(_≺_ : A → A → 𝓥 ̇ )
→ is-well-founded _≺_
→ is-well-founded (_≺ᵤₒ_ A _≺_)
Lemma-47 = ≺ᵤₒ-is-well-founded
Lemma-48 : Assumption-1
→ Assumption-2
→ Assumption-3
→ (β γ δ : Ordinal 𝓤)
→ F β ⊴ F γ +ₒ δ
→ F γ +ₒ δ ⊲ F (γ +ₒ 𝟙ₒ)
→ β ⊴ γ
Lemma-48 _ = F-reflects-⊴'
Corollary-49 : Assumption-1
→ Assumption-2
→ Assumption-3
→ (β γ : Ordinal 𝓤)
→ (F β ⊴ F γ → β ⊴ γ)
× (F β = F γ → β = γ)
Corollary-49 asm-1 asm-2 asm-3 β γ =
framework-with-assumptions.F-reflects-⊴ asm-2 asm-3 β γ
, framework-with-assumptions.F-left-cancellable asm-2 asm-3
Theorem-50 : (α : Ordinal 𝓤)
→ is-⊴-reflecting (α +ₒ_) × left-cancellable (α +ₒ_)
× (𝟙ₒ ⊴ α → is-⊴-reflecting (α ×ₒ_) × left-cancellable (α ×ₒ_))
× (𝟚ₒ ⊴ α → has-trichotomous-least-element α
→ is-⊴-reflecting (α ^ₒ_) × left-cancellable (α ^ₒ_))
Theorem-50 α =
+ₒ-reflects-⊴ α , +ₒ-left-cancellable' α
, (λ l → let l' = lr-implication (at-least-𝟙₀-iff-greater-than-𝟘ₒ α) l
in ×ₒ-reflects-⊴ α l' , ×ₒ-left-cancellable' α l')
, (λ l t → ^ₒ-reflects-⊴ α l t , ^ₒ-left-cancellable α l t)
Proposition-51-i : (α β γ : Ordinal 𝓤)
→ ((f , _) : α +ₒ β ⊴ α +ₒ γ)
→ Σ (h , _) ꞉ β ⊴ γ , ((a : ⟨ α ⟩) → f (inl a) = inl a)
× ((b : ⟨ β ⟩) → f (inr b) = inr (h b))
Proposition-51-i = +ₒ-simulation-behaviour
Proposition-51-ii
: (α β γ : Ordinal 𝓤)
→ 𝟘ₒ ⊲ α
→ ((f , _) : α ×ₒ β ⊴ α ×ₒ γ)
→ Σ (h , _) ꞉ β ⊴ γ , ((a : ⟨ α ⟩) (b : ⟨ β ⟩) → f (a , b) = (a , h b))
Proposition-51-ii = ×ₒ-simulation-behaviour
Proposition-51-iii
: (α β γ : Ordinal 𝓤)
→ (t : has-trichotomous-least-element α)
→ 𝟚ₒ ⊴ α
→ ((f , _) : exponentiationᴸ α t β ⊴ exponentiationᴸ α t γ)
→ Σ (h , _) ꞉ β ⊴ γ ,
((ℓ : ⟨ exponentiationᴸ α t β ⟩)
→ DecrList₂-list _ _ (f ℓ)
= map (λ (a , b) → (a , h b)) (DecrList₂-list _ _ ℓ))
Proposition-51-iii = exponentiationᴸ-simulation-behaviour
\end{code}
Section 7. Constructive Taboos
\begin{code}
Proposition-52
: (((α β γ : Ordinal 𝓤) → has-trichotomous-least-element α
→ has-trichotomous-least-element β
→ α ⊴ β → α ^ₒ γ ⊴ β ^ₒ γ)
↔ EM 𝓤)
× (((α β γ : Ordinal 𝓤) → has-trichotomous-least-element α
→ has-trichotomous-least-element β
→ α ⊲ β → α ^ₒ γ ⊴ β ^ₒ γ)
→ EM 𝓤)
× (((α β : Ordinal 𝓤) → has-trichotomous-least-element α
→ has-trichotomous-least-element β
→ α ⊲ β → α ×ₒ α ⊴ β ×ₒ β)
→ EM 𝓤)
Proposition-52 = ( ^ₒ-monotone-in-base-implies-EM
, (λ em α β γ _ _ → EM-implies-exp-monotone-in-base em α β γ))
, ^ₒ-weakly-monotone-in-base-implies-EM
, ×ₒ-weakly-monotone-in-both-arguments-implies-EM
Lemma-53 : (P : 𝓤 ̇ ) (i : is-prop P)
→ let Pₒ = prop-ordinal P i in
𝟚ₒ {𝓤} ^ₒ Pₒ = 𝟙ₒ +ₒ Pₒ
Lemma-53 = ^ₒ-𝟚ₒ-by-prop
Lemma-54
: ((α β : Ordinal 𝓤) (f : ⟨ α ⟩ → ⟨ β ⟩) → is-order-preserving α β f → α ⊴ β)
↔ EM 𝓤
Lemma-54 = order-preserving-gives-≼-implies-EM ∘ H₁
, H₂ ∘ EM-implies-order-preserving-gives-≼
where
H₁ = λ h α β (f , f-order-pres) → ⊴-gives-≼ α β (h α β f f-order-pres)
H₂ = λ h α β f f-order-pres → ≼-gives-⊴ α β (h α β (f , f-order-pres))
Proposition-55-i : ((α β : Ordinal 𝓤) → β ⊴ α +ₒ β) ↔ EM 𝓤
Proposition-55-i = +ₒ-as-large-as-right-summand-implies-EM
, EM-implies-+ₒ-as-large-as-right-summand
Proposition-55-ii : ((α β : Ordinal 𝓤) → 𝟘ₒ ⊲ α → β ⊴ α ×ₒ β) ↔ EM 𝓤
Proposition-55-ii = ×ₒ-as-large-as-right-factor-implies-EM
, EM-implies-×ₒ-as-large-as-right-factor
Proposition-55-iii : ((β : Ordinal 𝓤) → β ⊴ 𝟚ₒ ^ₒ β) ↔ EM 𝓤
Proposition-55-iii = 𝟚ₒ^ₒ-as-large-as-exponent-implies-EM
, (λ em β → EM-implies-^ₒ-as-large-as-exponent
em 𝟚ₒ β (successor-increasing 𝟙ₒ))
Proposition-55-iv : ((α β : Ordinal 𝓤) → 𝟙ₒ ⊲ α → β ⊴ α ^ₒ β) ↔ EM 𝓤
Proposition-55-iv = ^ₒ-as-large-as-exponent-implies-EM
, EM-implies-^ₒ-as-large-as-exponent
\end{code}
Section 8. Approximating subtraction, division and logarithm operations
\begin{code}
Definition-56 : (P : Ordinal 𝓤 → 𝓥 ̇ ) → (𝓤 ⁺ ⊔ 𝓥 ̇) × (𝓤 ⁺ ⊔ 𝓥 ̇) × (𝓤 ⁺ ⊔ 𝓥 ̇)
Definition-56 P = bounded P , antitone P , closed-under-suprema P
Proposition-57 : (P : Ordinal 𝓤 → 𝓤 ̇ )
→ antitone P
→ bounded P
→ is-prop-valued-family P
→ closed-under-suprema P
→ Σ γ ꞉ Ordinal 𝓤 , γ greatest-satisfying P
Proposition-57 P at b p = greatest-ordinal-satisfying-predicate P p b at
Theorem-58-i : (t : Ordinal 𝓤 → Ordinal 𝓤)
→ (δ₀ : Ordinal 𝓤)
→ ((I : 𝓤 ̇ ) (F : I → Ordinal 𝓤) → t (sup F) = extended-sup (t ∘ F) δ₀)
→ (δ : Ordinal 𝓤)
→ δ₀ ⊴ δ
→ Σ γ ꞉ Ordinal 𝓤 , γ greatest-satisfying (λ - → (t - ⊴ δ) × (- ⊴ δ))
Theorem-58-i t δ₀ t-sup δ l = Enderton-like.enderton-like t δ₀ δ l t-sup
Theorem-58-ii : (t : Ordinal 𝓤 → Ordinal 𝓤)
→ (δ₀ : Ordinal 𝓤)
→ ((I : 𝓤 ̇ ) (F : I → Ordinal 𝓤) → t (sup F) = extended-sup (t ∘ F) δ₀)
→ ((α : Ordinal 𝓤) → α ⊴ t α)
→ (δ : Ordinal 𝓤)
→ δ₀ ⊴ δ
→ Σ γ ꞉ Ordinal 𝓤 , γ ⊴ δ × γ greatest-satisfying (λ - → (t - ⊴ δ))
Theorem-58-ii t δ₀ t-sup t-infl δ l =
Enderton-like-inflationary.enderton-like-inflationary t δ₀ δ l t-sup t-infl
Proposition-59
: (α β : Ordinal 𝓤)
→ (α ⊴ β → Σ γˢ ꞉ Ordinal 𝓤 ,
γˢ greatest-satisfying (λ - → (α +ₒ - ⊴ β) × (- ⊴ β)))
× (Σ γᵈ ꞉ Ordinal 𝓤 ,
γᵈ greatest-satisfying (λ - → (α ×ₒ - ⊴ β) × (- ⊴ β)))
× (𝟙ₒ ⊴ β → Σ γˡ ꞉ Ordinal 𝓤 ,
γˡ greatest-satisfying (λ - → (α ^ₒ - ⊴ β) × (- ⊴ β)))
Proposition-59 α β =
approximate-subtraction α β
, approximate-division α β
, aproximate-logarithm α β
Proposition-60-i
: ((α β : Ordinal 𝓤) → α ⊴ β
→ Σ γ ꞉ Ordinal 𝓤 , (γ ⊴ β) × (γ greatest-satisfying (λ - → (α +ₒ - ⊴ β))))
↔ EM 𝓤
Proposition-60-i =
approximate-subtraction-variation-implies-EM
, EM-implies-approximate-subtraction-variation
Proposition-60-ii
: ((α β : Ordinal 𝓤) → 𝟘ₒ ⊲ α
→ Σ γ ꞉ Ordinal 𝓤 , (γ ⊴ β) × (γ greatest-satisfying (λ - → (α ×ₒ - ⊴ β))))
↔ EM 𝓤
Proposition-60-ii =
approximate-division-variation-implies-EM
, EM-implies-approximate-division-variation
Proposition-60-iii
: ((α β : Ordinal 𝓤) → 𝟙ₒ ⊴ β → 𝟙ₒ ⊲ α
→ Σ γ ꞉ Ordinal 𝓤 , (γ ⊴ β) × (γ greatest-satisfying (λ - → (α ^ₒ - ⊴ β))))
↔ EM 𝓤
Proposition-60-iii =
approximate-logarithm-variation-implies-EM
, EM-implies-approximate-logarithm-variation
\end{code}