Martin Escardo, 4th April 2022
See the 2018 file OrdinalNotationInterpretation1 for discussion.
We interpret Brouwer ordinal codes as ordinals in four ways and relate
them.
\begin{code}
{-# OPTIONS --safe --without-K --lossy-unification #-}
open import UF.Univalence
open import UF.PropTrunc
module Ordinals.NotationInterpretation0
(ua : Univalence)
(pt : propositional-truncations-exist)
where
open import UF.FunExt
open import UF.Subsingletons
open import UF.UA-FunExt
private
fe : FunExt
fe = Univalence-gives-FunExt ua
fe' : Fun-Ext
fe' {𝓤} {𝓥} = fe 𝓤 𝓥
pe : Prop-Ext
pe = Univalence-gives-Prop-Ext ua
open PropositionalTruncation pt
open import CoNaturals.Type
open import MLTT.Spartan
open import Notation.CanonicalMap
open import Ordinals.AdditionProperties ua
open import Ordinals.Arithmetic fe
open import Ordinals.Brouwer
open import Ordinals.Injectivity
open import Ordinals.Maps
open import Ordinals.OrdinalOfOrdinals ua
open import Ordinals.OrdinalOfOrdinalsSuprema ua
open import Ordinals.ToppedArithmetic fe
open import Ordinals.ToppedType fe
open import Ordinals.TrichotomousArithmetic fe
open import Ordinals.TrichotomousType fe
open import Ordinals.Type
open import Ordinals.Underlying
open import TypeTopology.CompactTypes
open import TypeTopology.SquashedSum fe
open import UF.Size
open ordinals-injectivity fe
module _ (sr : Set-Replacement pt) where
open suprema pt sr
private
extension : (ℕ → Ordinal 𝓤₀) → (ℕ∞ → Ordinal 𝓤₀)
extension α = α ↗ (embedding-ℕ-to-ℕ∞ fe')
\end{code}
We now define our four interpretations of Brouwer ordinal trees as
ordinals.
The first interpretation is the intended one.
\begin{code}
⟦_⟧₀ : B → Ordinal 𝓤₀
⟦ Z ⟧₀ = 𝟘ₒ
⟦ S b ⟧₀ = ⟦ b ⟧₀ +ₒ 𝟙ₒ
⟦ L b ⟧₀ = sup (λ i → ⟦ b i ⟧₀)
\end{code}
The second interpretation is into topped ordinals. It enlarges, in
some sense, the first interpretation, so that we get bigger, and,
importantly for our purposes, compact ordinals.
\begin{code}
⟦_⟧₁ : B → Ordinalᵀ 𝓤₀
⟦ Z ⟧₁ = 𝟙ᵒ
⟦ S b ⟧₁ = ⟦ b ⟧₁ +ᵒ 𝟙ᵒ
⟦ L b ⟧₁ = ∑¹ (λ i → ⟦ b i ⟧₁)
\end{code}
The third interpretation enlarges the first one in a different way.
\begin{code}
⟦_⟧₂ : B → Ordinal 𝓤₀
⟦ Z ⟧₂ = 𝟙ₒ
⟦ S b ⟧₂ = ⟦ b ⟧₂ +ₒ 𝟙ₒ
⟦ L b ⟧₂ = sup (extension (λ i → ⟦ b i ⟧₂))
\end{code}
And the fourth and last interpretation is into trichomotomous
ordinals, where Ordinal₃ 𝓤 is the type of trichotomous ordinals in the
universe 𝓤. We again take sums rather than sups.
\begin{code}
⟦_⟧₃ : B → Ordinal₃ 𝓤₀
⟦ Z ⟧₃ = 𝟘₃
⟦ S b ⟧₃ = ⟦ b ⟧₃ +₃ 𝟙₃
⟦ L b ⟧₃ = ∑³ ω₃ (λ i → ⟦ b i ⟧₃)
\end{code}
We'll prove the following inequalities, where the arrows represent the
relation _⊴_ on ordinals, under the assumption of excluded middle:
⟦ b ⟧₀ → ⟦ b ⟧₃
↓ ↓
⟦ b ⟧₂ → ⟦ b ⟧₁
But we first show that ⟦ b ⟧₂ and ⟦ b ⟧₁ are compact and pointed. The
pointedness is absolutely essential in the proofs by induction, via
the indirect use of prop-tychonoff in Σ¹, because a version of
prop-tychonoff without pointedness implies excluded middle. And this
is why we defined the base cases to be 𝟙 rather than 𝟘.
\begin{code}
⟦_⟧₂-is-compact∙ : (b : B) → is-compact∙ ⟨ ⟦ b ⟧₂ ⟩
⟦ Z ⟧₂-is-compact∙ = 𝟙-is-compact∙
⟦ S b ⟧₂-is-compact∙ = +-is-compact∙ ⟦ b ⟧₂-is-compact∙ (𝟙-is-compact∙)
⟦ L b ⟧₂-is-compact∙ =
codomain-of-surjection-is-compact∙ pt
(sum-to-sup (extension (λ i → ⟦ b i ⟧₂)))
(sum-to-sup-is-surjection (extension (λ i → ⟦ b i ⟧₂)))
(Σ¹-compact∙
(λ i → ⟨ ⟦ b i ⟧₂ ⟩)
(λ i → ⟦ b i ⟧₂-is-compact∙ ))
⟦_⟧₁-is-compact∙ : (b : B) → is-compact∙ ⟨ ⟦ b ⟧₁ ⟩
⟦ Z ⟧₁-is-compact∙ = 𝟙-is-compact∙
⟦ S b ⟧₁-is-compact∙ = Σ-is-compact∙ 𝟙+𝟙-is-compact∙
(dep-cases
(λ _ → ⟦ b ⟧₁-is-compact∙)
(λ _ → 𝟙-is-compact∙))
⟦ L b ⟧₁-is-compact∙ = Σ¹-compact∙
(λ i → ⟨ ⟦ b i ⟧₁ ⟩)
(λ i → ⟦ b i ⟧₁-is-compact∙)
\end{code}
The successor function on ordinals is not necessarily monotone, but it
is if excluded middle holds.
\begin{code}
open import UF.ClassicalLogic
open import Ordinals.SupSum ua
comparison₀₃ : Excluded-Middle → (b : B) → ⟦ b ⟧₀ ⊴ [ ⟦ b ⟧₃ ]
comparison₀₃ em Z = ⊴-refl 𝟘ₒ
comparison₀₃ em (S b) = succ-monotone em ⟦ b ⟧₀ [ ⟦ b ⟧₃ ] (comparison₀₃ em b)
comparison₀₃ em (L b) = IV
where
I : (i : ℕ) → ⟦ b i ⟧₀ ⊴ [ ⟦ b i ⟧₃ ]
I i = comparison₀₃ em (b i)
II : sup (λ i → ⟦ b i ⟧₀) ⊴ sup (λ i → [ ⟦ b i ⟧₃ ])
II = sup-monotone (λ i → ⟦ b i ⟧₀) (λ i → [ ⟦ b i ⟧₃ ]) I
III : sup (λ i → [ ⟦ b i ⟧₃ ]) ⊴ [ ∑³ ω₃ (λ i → ⟦ b i ⟧₃) ]
III = sup-bounded-by-sum₃ em pt sr _ _
IV : sup (λ i → ⟦ b i ⟧₀) ⊴ [ ∑³ ω₃ (λ i → ⟦ b i ⟧₃) ]
IV = ⊴-trans _ _ _ II III
comparison₀₂ : EM 𝓤₁ → (b : B) → ⟦ b ⟧₀ ⊴ ⟦ b ⟧₂
comparison₀₂ em Z = 𝟘ₒ-least-⊴ 𝟙ₒ
comparison₀₂ em (S b) = succ-monotone em ⟦ b ⟧₀ ⟦ b ⟧₂ (comparison₀₂ em b)
comparison₀₂ em (L b) = VI
where
I : (n : ℕ) → ⟦ b n ⟧₀ ⊴ ⟦ b n ⟧₂
I n = comparison₀₂ em (b n)
II : (n : ℕ) → extension (λ i → ⟦ b i ⟧₂) (ℕ-to-ℕ∞ n) = ⟦ b n ⟧₂
II n = ↗-property (ua 𝓤₀) (λ i → ⟦ b i ⟧₂) (embedding-ℕ-to-ℕ∞ fe') n
III : (n : ℕ) → ⟦ b n ⟧₀ ⊴ extension (λ i → ⟦ b i ⟧₂) (ℕ-to-ℕ∞ n)
III n = transport (⟦_⟧₀ (b n) ⊴_) ((II n)⁻¹) (I n)
IV : sup (λ i → ⟦ b i ⟧₀) ⊴ sup (extension (λ i → ⟦ b i ⟧₂) ∘ ℕ-to-ℕ∞)
IV = sup-monotone _ _ III
V : sup (extension (λ i → ⟦ b i ⟧₂) ∘ ℕ-to-ℕ∞)
⊴ sup (extension (λ i → ⟦ b i ⟧₂))
V = sup-is-lower-bound-of-upper-bounds _ _
(λ n → sup-is-upper-bound _ (ℕ-to-ℕ∞ n))
VI : sup (λ i → ⟦ b i ⟧₀) ⊴ sup (extension (λ i → ⟦ b i ⟧₂))
VI = ⊴-trans _ _ _ IV V
comparison₂₁ : Excluded-Middle → (b : B) → ⟦ b ⟧₂ ⊴ [ ⟦ b ⟧₁ ]
comparison₂₁ em Z = ⊴-refl 𝟙ₒ
comparison₂₁ em (S b) = III
where
I : (⟦ b ⟧₂ +ₒ 𝟙ₒ) ⊴ ([ ⟦ b ⟧₁ ] +ₒ 𝟙ₒ)
I = succ-monotone em (⟦ b ⟧₂) [ ⟦ b ⟧₁ ] (comparison₂₁ em b)
II : [ ⟦ b ⟧₁ +ᵒ 𝟙ᵒ ] = ([ ⟦ b ⟧₁ ] +ₒ 𝟙ₒ)
II = alternative-plus (⟦ b ⟧₁) 𝟙ᵒ
III : (⟦ b ⟧₂ +ₒ 𝟙ₒ) ⊴ [ ⟦ b ⟧₁ +ᵒ 𝟙ᵒ ]
III = transport⁻¹ ((⟦ b ⟧₂ +ₒ 𝟙ₒ) ⊴_) II I
comparison₂₁ em (L b) = V
where
α : ℕ∞ → Ordinal 𝓤₀
α = extension (λ i → ⟦ b i ⟧₂)
β : ℕ∞ → Ordinal 𝓤₀
β = extension (λ i → [ ⟦ b i ⟧₁ ])
τ : ℕ∞ → Ordinalᵀ 𝓤₀
τ = topped-ordinals-injectivity._↗_ fe
(λ i → ⟦ b i ⟧₁)
(embedding-ℕ-to-ℕ∞ fe')
I : (i : ℕ) → ⟦ b i ⟧₂ ⊴ [ ⟦ b i ⟧₁ ]
I i = comparison₂₁ em (b i)
II : (u : ℕ∞) → α u ⊴ β u
II = ordinals-injectivity-order.↗-preserves-⊴ ua (embedding-ℕ-to-ℕ∞ fe') _ _ I
III : sup α ⊴ sup β
III = sup-monotone α β II
IV : sup β ⊴ [ ∑ ℕ∞ᵒ τ ]
IV = sup-bounded-by-sumᵀ em pt sr ℕ∞ᵒ τ
V : sup α ⊴ [ ∑ ℕ∞ᵒ τ ]
V = ⊴-trans _ _ _ III IV
map₃₁ : (b : B) → ⟨ ⟦ b ⟧₃ ⟩ → ⟨ ⟦ b ⟧₁ ⟩
map₃₁ Z x = unique-from-𝟘 x
map₃₁ (S b) (inl x) = inl ⋆ , map₃₁ b x
map₃₁ (S b) (inr x) = inr ⋆ , ⋆
map₃₁ (L b) (i , x) = ℕ-to-ℕ∞ i , f
where
f : ((j , p) : fiber ℕ-to-ℕ∞ (ℕ-to-ℕ∞ i)) → ⟨ ⟦ b j ⟧₁ ⟩
f (j , p) = transport⁻¹ (λ - → ⟨ ⟦ b - ⟧₁ ⟩) (ℕ-to-ℕ∞-lc p) (map₃₁ (b i) x)
map₃₁-is-order-preserving : (b : B)
→ is-order-preserving [ ⟦ b ⟧₃ ] [ ⟦ b ⟧₁ ] (map₃₁ b)
map₃₁-is-order-preserving (S b) (inl x) (inl y) l =
inr (refl , (map₃₁-is-order-preserving b x y l))
map₃₁-is-order-preserving (S b) (inl x) (inr y) ⋆ = inl ⋆
map₃₁-is-order-preserving (L b) (i , x) (j , y) (inl l) =
inl (ℕ-to-ℕ∞-order-preserving i j l)
map₃₁-is-order-preserving (L b) (i , x) (.i , y) (inr (refl , m)) =
inr (refl , (i , refl) , γ)
where
IH : map₃₁ (b i) x ≺⟨ ⟦ b i ⟧₁ ⟩ map₃₁ (b i) y
IH = map₃₁-is-order-preserving (b i) x y m
γ : transport⁻¹ (λ - → ⟨ ⟦ b - ⟧₁ ⟩) (ℕ-to-ℕ∞-lc refl) (map₃₁ (b i) x)
≺⟨ ⟦ b i ⟧₁ ⟩
transport⁻¹ (λ - → ⟨ ⟦ b - ⟧₁ ⟩) (ℕ-to-ℕ∞-lc refl) (map₃₁ (b i) y)
γ = transport⁻¹
(λ r → transport⁻¹ (λ - → ⟨ ⟦ b - ⟧₁ ⟩) r (map₃₁ (b i) x) ≺⟨ ⟦ b i ⟧₁ ⟩
transport⁻¹ (λ - → ⟨ ⟦ b - ⟧₁ ⟩) r (map₃₁ (b i) y))
(ℕ-to-ℕ∞-lc-refl i)
IH
comparison₃₁ : EM 𝓤₀ → (b : B) → [ ⟦ b ⟧₃ ] ⊴ [ ⟦ b ⟧₁ ]
comparison₃₁ em b = ≼-gives-⊴ _ _
(EM-implies-order-preserving-gives-≼ em _ _
(map₃₁ b , map₃₁-is-order-preserving b))
\end{code}
This completes the promised comparisons.
We also have:
\begin{code}
map₁₂ : (b : B) → ⟨ ⟦ b ⟧₁ ⟩ → ⟨ ⟦ b ⟧₂ ⟩
map₁₂ Z x = x
map₁₂ (S b) (inl ⋆ , x) = inl (map₁₂ b x)
map₁₂ (S b) (inr ⋆ , y) = inr ⋆
map₁₂ (L b) (u , f) = sum-to-sup
(extension (λ i → ⟦ b i ⟧₂))
(u , g)
where
g : ((i , _) : fiber ℕ-to-ℕ∞ u) → ⟨ ⟦ b i ⟧₂ ⟩
g (i , p) = map₁₂ (b i) (f (i , p))
\end{code}
TODO. Is the function map₁₂ a surjection?