Martin Escardo, 12th September 2018. We define arithmetic operations on ℕ∞ by corecursion as defined in the module CoNaturals. The lack of pattern matching on Zero and Succ and of some definitional equalities make some proofs lengthier than they would be if we had used a built-in coinductive definition of ℕ∞. We use the final coalgebra property of ℕ∞ for the functor 𝟙 + (-) to both construct the functions and prove their properties (including idempotency, commutativity and associativity of the minimum operation). NB. There are shorter constructions with more direct proofs of the minimum function, e.g. take the pointwise minimum in 𝟚 (see the module GenericConvergentSequence), but this module serves as a good illustration of reasoning with the final coalgebra property to both construct functions and prove their properties. This file will grow on demand. The first operation we needed (for codistances) is minimum. \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import UF.FunExt module CoNaturals.Arithmetic (fe : FunExt) where private fe₀ : funext 𝓤₀ 𝓤₀ fe₀ = fe 𝓤₀ 𝓤₀ open import MLTT.Two-Properties open import CoNaturals.Type renaming (min to min') open import CoNaturals.UniversalProperty fe open import Notation.Order open import Notation.CanonicalMap \end{code} We consider a 𝟙 + (-) coalgebra κ on ℕ∞ × ℕ∞ so that min is the unique homomorphism to the final coalgebra PRED : ℕ∞ → 𝟙 + ℕ∞ on ℕ∞. \begin{code} private κ-min : ℕ∞ × ℕ∞ → 𝟙 {𝓤₀} + ℕ∞ × ℕ∞ κ-min (u , v) = 𝟚-Cases (positivity u) (inl ⋆) (𝟚-Cases (positivity v) (inl ⋆) (inr (Pred u , Pred v))) min : ℕ∞ × ℕ∞ → ℕ∞ min = ℕ∞-corec κ-min \end{code} The defining equations of min thus are: \begin{code} min-eq₀ : ∀ v → min (Zero , v) = Zero min-eq₁ : ∀ u → min (Succ u , Zero) = Zero min-eq₂ : ∀ u v → min (Succ u , Succ v) = Succ (min (u , v)) min-eq₀ = λ v → Coalg-morphism-Zero κ-min (Zero , v) ⋆ refl min-eq₁ = λ u → Coalg-morphism-Zero κ-min (Succ u , Zero) ⋆ refl min-eq₂ = λ u v → Coalg-morphism-Succ κ-min (Succ u , Succ v) (u , v) refl \end{code} Maximum (another version is defined in GenericConvergentSequence): \begin{code} private κ-max : ℕ∞ × ℕ∞ → 𝟙 {𝓤₀} + ℕ∞ × ℕ∞ κ-max (u , v) = 𝟚-Cases (positivity u) (𝟚-Cases (positivity v) (inl ⋆) (inr (Zero , Pred v))) (𝟚-Cases (positivity v) (inr (Pred u , Zero)) (inr (Pred u , (Pred v)))) max' : ℕ∞ × ℕ∞ → ℕ∞ max' = ℕ∞-corec κ-max max-eq₀ : max' (Zero , Zero) = Zero max-eq₁ : ∀ v → max' (Zero , Succ v) = Succ (max' (Zero , v)) max-eq₂ : ∀ u → max' (Succ u , Zero) = Succ (max' (u , Zero)) max-eq₃ : ∀ u v → max' (Succ u , Succ v) = Succ (max' (u , v)) max-eq₀ = Coalg-morphism-Zero κ-max (Zero , Zero) ⋆ refl max-eq₁ = λ v → Coalg-morphism-Succ κ-max (Zero , Succ v) (Zero , v) refl max-eq₂ = λ u → Coalg-morphism-Succ κ-max (Succ u , Zero) (u , Zero) refl max-eq₃ = λ u v → Coalg-morphism-Succ κ-max (Succ u , Succ v) (u , v) refl \end{code} Addition: \begin{code} private κ-add : ℕ∞ × ℕ∞ → 𝟙 {𝓤₀} + ℕ∞ × ℕ∞ κ-add (u , v) = 𝟚-Cases (positivity u) (𝟚-Cases (positivity v) (inl ⋆) (inr (Zero , Pred v))) (inr (Pred u , v)) add : ℕ∞ × ℕ∞ → ℕ∞ add = ℕ∞-corec κ-add add-eq₀ : add (Zero , Zero) = Zero add-eq₁ : ∀ v → add (Zero , Succ v) = Succ (add (Zero , v)) add-eq₂ : ∀ u v → add (Succ u , v) = Succ (add (u , v)) add-eq₀ = Coalg-morphism-Zero κ-add (Zero , Zero) ⋆ refl add-eq₁ = λ v → Coalg-morphism-Succ κ-add (Zero , Succ v) (Zero , v) refl add-eq₂ = λ u v → Coalg-morphism-Succ κ-add (Succ u , v) (u , v) refl \end{code} We now prove properties of the minimum function using the final-coalgebra property. We already know that min (Zero , v) = Zero, that is, Zero is minimal. We next prove that ∞ is maximal, i.e., min (∞ , v) = v. Using the equations min-eq₀ and min-eq₂, we have that the function λ v → min (∞ , v) is an algebra homomorphism from PRED to PRED and hence is equal to the identity function: \begin{code} min-unit : ∀ v → min (∞ , v) = v min-unit v = ap (λ - → - v) h-is-corec where h : ℕ∞ → ℕ∞ h v = min (∞ , v) h-homomorphism : is-homomorphism PRED h h-homomorphism = dfunext fe₀ (λ v → φ v (Zero+Succ fe₀ v)) where φ : (v : ℕ∞) → (v = Zero) + (Σ t ꞉ ℕ∞ , v = Succ t) → PRED (h v) = 𝟙+ h (PRED v) φ v (inl refl) = PRED (min (∞ , Zero)) =⟨ ap PRED (min-eq₀ ∞) ⟩ PRED Zero =⟨ refl ⟩ 𝟙+ h (PRED Zero) ∎ φ v (inr (t , refl)) = PRED (min (∞ , Succ t)) =⟨ ap (λ - → PRED (min (- , Succ t))) (Succ-∞-is-∞ fe₀ ⁻¹) ⟩ PRED (min (Succ ∞ , Succ t)) =⟨ ap PRED (min-eq₂ ∞ t) ⟩ PRED (Succ (min (∞ , t))) =⟨ refl ⟩ 𝟙+ h (PRED (Succ t)) ∎ h-is-corec : h = id h-is-corec = homomorphism-uniqueness PRED h id h-homomorphism id-homomorphism \end{code} Using the equations min-eq₀ and min-eq₂, we have that the function λ u → min (u , u) is an algebra homomorphism from PRED to PRED and hence is equal to the identity function: \begin{code} min-idempotent : ∀ u → min (u , u) = u min-idempotent u = ap (λ - → - u) h-is-corec where h : ℕ∞ → ℕ∞ h u = min (u , u) h-homomorphism : is-homomorphism PRED h h-homomorphism = dfunext fe₀ (λ u → φ (Zero+Succ fe₀ u)) where φ : {u : ℕ∞} → (u = Zero) + (Σ w ꞉ ℕ∞ , u = Succ w) → PRED (h u) = 𝟙+ h (PRED u) φ (inl refl) = PRED (min (Zero , Zero)) =⟨ ap PRED (min-eq₀ Zero) ⟩ PRED Zero =⟨ refl ⟩ 𝟙+ h (PRED Zero) ∎ φ (inr (w , refl)) = PRED (min (Succ w , Succ w)) =⟨ ap PRED (min-eq₂ w w) ⟩ PRED (Succ (min (w , w))) =⟨ refl ⟩ 𝟙+ h (PRED (Succ w)) ∎ h-is-corec : h = id h-is-corec = homomorphism-uniqueness PRED h id h-homomorphism id-homomorphism \end{code} (Notice that the above argument actually shows that any function f : ℕ∞ × ℕ∞ → ℕ∞ that satisfies f (Zero , Zero) = Zero and f (Succ w , Succ w) = Succ (f w) is idempotent, as it is the case of the maximum function) Similarly, to prove that min is commutative, we show that the function λ (u , v) → min (v , u) satisfies the same "defining equations" as the function min. The following equation is derived from the above equations min-eq₀ and min-eq₁ by cases on whether u is Zero or a Succ (Pred u). \begin{code} eq₃-from-eq₀-and-eq₁ : (h : ℕ∞ × ℕ∞ → ℕ∞) → (∀ v → h (Zero , v) = Zero) → (∀ u → h (Succ u , Zero) = Zero) → (∀ u → h (u , Zero) = Zero) eq₃-from-eq₀-and-eq₁ h eq₀ eq₁ u = γ (Zero+Succ fe₀ u) where γ : (u = Zero) + (Σ w ꞉ ℕ∞ , u = Succ w) → h (u , Zero) = Zero γ (inl refl) = h (Zero , Zero) =⟨ eq₀ Zero ⟩ Zero ∎ γ (inr (w , refl)) = h (Succ w , Zero) =⟨ eq₁ w ⟩ Zero ∎ min-eq₃ : ∀ u → min (u , Zero) = Zero min-eq₃ = eq₃-from-eq₀-and-eq₁ min min-eq₀ min-eq₁ \end{code} Conversely, if a function satisfies the above equations, then it is a coalgebra homomorphism and hence is equal to ℕ∞-corec κ-min. \begin{code} min-equations-characterize-homomorphisms : (h : ℕ∞ × ℕ∞ → ℕ∞) → (∀ v → h (Zero , v) = Zero) → (∀ u → h (Succ u , Zero) = Zero) → (∀ u v → h (Succ u , Succ v) = Succ (h (u , v))) → is-homomorphism κ-min h min-equations-characterize-homomorphisms h eq₀ eq₁ eq₂ = dfunext fe₀ γ where γ : (w : ℕ∞ × ℕ∞) → PRED (h w) = 𝟙+ h (κ-min w) γ (u , v) = φ (Zero+Succ fe₀ u) (Zero+Succ fe₀ v) where φ : (u = Zero) + (Σ w ꞉ ℕ∞ , u = Succ w) → (v = Zero) + (Σ t ꞉ ℕ∞ , v = Succ t) → PRED (h (u , v)) = 𝟙+ h (κ-min (u , v)) φ (inl refl) _ = PRED (h (Zero , v)) =⟨ ap PRED (eq₀ v) ⟩ PRED Zero =⟨ refl ⟩ 𝟙+ h (κ-min (Zero , v)) ∎ φ (inr (w , refl)) (inl refl) = PRED (h (Succ w , Zero)) =⟨ ap PRED (eq₁ w) ⟩ PRED Zero =⟨ refl ⟩ 𝟙+ h (κ-min (Succ w , Zero)) ∎ φ (inr (w , refl)) (inr (t , refl)) = PRED (h (Succ w , Succ t)) =⟨ ap PRED (eq₂ w t) ⟩ PRED (Succ (h (w , t))) =⟨ refl ⟩ 𝟙+ h (κ-min (Succ w , Succ t)) ∎ \end{code} We can show that the min defined here is equivalent to that given in GenericConvergentSequence: \begin{code} min'-eq₀ : ∀ v → uncurry min' (Zero , v) = Zero min'-eq₀ v = ℕ∞-to-ℕ→𝟚-lc (fe 𝓤₀ 𝓤₀) refl min'-eq₁ : ∀ u → uncurry min' (Succ u , Zero) = Zero min'-eq₁ u = ℕ∞-to-ℕ→𝟚-lc (fe 𝓤₀ 𝓤₀) (dfunext (fe 𝓤₀ 𝓤₀) (λ i → Lemma[min𝟚ab=₀] (inr refl))) min'-eq₂ : ∀ u v → uncurry min' (Succ u , Succ v) = Succ (uncurry min' (u , v)) min'-eq₂ u v = ℕ∞-to-ℕ→𝟚-lc (fe 𝓤₀ 𝓤₀) (dfunext (fe 𝓤₀ 𝓤₀) γ) where γ : pr₁ (uncurry min' (Succ u , Succ v)) ∼ pr₁ (Succ (uncurry min' (u , v))) γ zero = refl γ (succ i) = refl min= : min = uncurry min' min= = homomorphism-uniqueness κ-min min (uncurry min') (ℕ∞-corec-homomorphism κ-min) (min-equations-characterize-homomorphisms (uncurry min') min'-eq₀ min'-eq₁ min'-eq₂) \end{code} To prove that min is commutative, we show that the following function h is also a coalgebra homomorphism and hence equal to ℕ∞-corec p: \begin{code} min-commutative : ∀ u v → min (u , v) = min (v , u) min-commutative u v = h (v , u) =⟨ ap (λ - → - (v , u)) h-is-min ⟩ ℕ∞-corec κ-min (v , u) ∎ where h : ℕ∞ × ℕ∞ → ℕ∞ h (u , v) = min (v , u) h-homomorphism : is-homomorphism κ-min h h-homomorphism = min-equations-characterize-homomorphisms h h-eq₀ h-eq₁ h-eq₂ where h-eq₀ : (v : ℕ∞) → min (v , Zero) = Zero h-eq₀ v = min-eq₃ v h-eq₁ : (u : ℕ∞) → min (Zero , Succ u) = Zero h-eq₁ u = min-eq₀ (Succ u) h-eq₂ : (u v : ℕ∞) → min (Succ v , Succ u) = Succ (min (v , u)) h-eq₂ u v = min-eq₂ v u h-is-min : h = min h-is-min = homomorphism-uniqueness κ-min h (ℕ∞-corec κ-min) h-homomorphism (ℕ∞-corec-homomorphism κ-min) \end{code} Similarly, to prove that min is associative, we show that the two functions λ (u , v , w) → min (u , min (v , w)) λ (u , v , w) → min (min (u , v) , w) are homormorphisms from the same coalgebra on ℕ∞ × ℕ∞ × ℕ∞ to the final coalgebra PRED. \begin{code} min-associative : (u v w : ℕ∞) → min (u , min (v , w)) = min (min (u , v) , w) min-associative u v w = ap (λ - → - (u , v , w)) p where f g : ℕ∞ × ℕ∞ × ℕ∞ → ℕ∞ f (u , v , w) = min (u , min (v , w)) g (u , v , w) = min (min (u , v) , w) κ : ℕ∞ × ℕ∞ × ℕ∞ → 𝟙 + ℕ∞ × ℕ∞ × ℕ∞ κ (u , v , w) = 𝟚-Cases (positivity u) (inl ⋆) (𝟚-Cases (positivity v) (inl ⋆) (𝟚-Cases (positivity w) (inl ⋆) (inr (Pred u , Pred v , Pred w)))) f-homomorphism : is-homomorphism κ f f-homomorphism = dfunext fe₀ γ where γ : (z : ℕ∞ × ℕ∞ × ℕ∞) → PRED (f z) = 𝟙+ f (κ z) γ (u , v , w) = φ (Zero+Succ fe₀ u) (Zero+Succ fe₀ v) (Zero+Succ fe₀ w) where φ : (u = Zero) + (Σ x ꞉ ℕ∞ , u = Succ x) → (v = Zero) + (Σ y ꞉ ℕ∞ , v = Succ y) → (w = Zero) + (Σ z ꞉ ℕ∞ , w = Succ z) → PRED (f (u , v , w)) = 𝟙+ f (κ (u , v , w)) φ (inl refl) _ _ = ap PRED (min-eq₀ (min (v , w))) φ (inr (x , refl)) (inl refl) _ = PRED (min (Succ x , min (Zero , w))) =⟨ ap (λ - → PRED (min (Succ x , -))) (min-eq₀ w) ⟩ PRED (min (Succ x , Zero)) =⟨ ap PRED (min-eq₃ u) ⟩ PRED Zero =⟨ ap PRED (min-eq₃ u) ⟩ 𝟙+ f (κ (Succ x , Zero , w)) ∎ φ (inr (x , refl)) (inr (y , refl)) (inl refl) = PRED (min (Succ x , min (Succ y , Zero))) =⟨ ap (λ - → PRED (min (Succ x , -))) (min-eq₃ (Succ y)) ⟩ PRED (min (Succ x , Zero)) =⟨ ap PRED (min-eq₃ (Succ x)) ⟩ 𝟙+ f (κ (Succ x , Succ y , Zero)) ∎ φ (inr (x , refl)) (inr (y , refl)) (inr (z , refl)) = PRED (min (Succ x , min (Succ y , Succ z))) =⟨ ap (λ - → PRED (min (Succ x , -))) (min-eq₂ y z) ⟩ PRED (min (Succ x , Succ (min (y , z)))) =⟨ ap PRED (min-eq₂ x (min (y , z))) ⟩ 𝟙+ f (κ (Succ x , Succ y , Succ z)) ∎ g-homomorphism : is-homomorphism κ g g-homomorphism = dfunext fe₀ γ where γ : (z : ℕ∞ × ℕ∞ × ℕ∞) → PRED (g z) = 𝟙+ g (κ z) γ (u , v , w) = φ (Zero+Succ fe₀ u) (Zero+Succ fe₀ v) (Zero+Succ fe₀ w) where φ : (u = Zero) + (Σ x ꞉ ℕ∞ , u = Succ x) → (v = Zero) + (Σ y ꞉ ℕ∞ , v = Succ y) → (w = Zero) + (Σ z ꞉ ℕ∞ , w = Succ z) → PRED (g (u , v , w)) = 𝟙+ g (κ (u , v , w)) φ (inl refl) _ _ = ap PRED (min-eq₀ (min (v , w))) φ (inr (x , refl)) (inl refl) _ = PRED (min (min (Succ x , Zero) , w)) =⟨ ap (λ - → PRED (min (- , w))) (min-eq₃ (Succ x)) ⟩ PRED (min (Zero , w)) =⟨ ap PRED (min-eq₀ w) ⟩ PRED Zero =⟨ refl ⟩ 𝟙+ g (κ (Succ x , Zero , w)) ∎ φ (inr (x , refl)) (inr (y , refl)) (inl refl) = PRED (min (min (Succ x , Succ y) , Zero)) =⟨ ap PRED (min-eq₃ (min (Succ x , Succ y))) ⟩ PRED Zero =⟨ refl ⟩ 𝟙+ g (κ (Succ x , Succ y , Zero)) ∎ φ (inr (x , refl)) (inr (y , refl)) (inr (z , refl)) = PRED (min (min (Succ x , Succ y) , Succ z)) =⟨ ap (λ - → PRED (min (- , Succ z))) (min-eq₂ x y) ⟩ PRED (min (Succ (min (x , y)) , Succ z)) =⟨ ap PRED (min-eq₂ (min (x , y)) z) ⟩ PRED (Succ (min (min (x , y) , z))) =⟨ refl ⟩ 𝟙+ g (κ (Succ x , Succ y , Succ z)) ∎ p : f = g p = homomorphism-uniqueness κ f g f-homomorphism g-homomorphism \end{code} Thus, ℕ∞ equipped with (min , Zero, ∞) is a bounded semilattice with bottom Zero and top ∞. \begin{code} min-is-bounded-semilattice : (∀ v → min (Zero , v) = Zero) × (∀ v → min (∞ , v) = v) × (∀ u → min (u , u) = u) × (∀ u v → min (u , v) = min (v , u)) × (∀ u v w → min (u , min (v , w)) = min (min (u , v) , w)) min-is-bounded-semilattice = min-eq₀ , min-unit , min-idempotent , min-commutative , min-associative \end{code} The following two facts invert the equations that characterize min: \begin{code} min-Zero : ∀ u v → min (u , v) = Zero → (u = Zero) + (v = Zero) min-Succ : ∀ u v x → min (u , v) = Succ x → (u = Succ (Pred u)) × (v = Succ (Pred v)) × (x = min (Pred u , Pred v)) \end{code} And here are their constructions: \begin{code} min-Zero u v r = h (Zero+Succ fe₀ u) (Zero+Succ fe₀ v) where h : (u = Zero) + (Σ w ꞉ ℕ∞ , u = Succ w) → (v = Zero) + (Σ t ꞉ ℕ∞ , v = Succ t) → (u = Zero) + (v = Zero) h (inl refl) _ = inl refl h (inr (w , refl)) (inl refl) = inr refl h (inr (w , refl)) (inr (t , refl)) = 𝟘-elim (Zero-not-Succ (r ⁻¹ ∙ min-eq₂ w t)) min-Succ u v x r = h (Zero+Succ fe₀ u) (Zero+Succ fe₀ v) where h : (u = Zero) + (Σ w ꞉ ℕ∞ , u = Succ w) → (v = Zero) + (Σ t ꞉ ℕ∞ , v = Succ t) → (u = Succ (Pred u)) × (v = Succ (Pred v)) × (x = min (Pred u , Pred v)) h (inl refl) _ = 𝟘-elim (Zero-not-Succ (Zero =⟨ (min-eq₀ v)⁻¹ ⟩ min (Zero , v) =⟨ r ⟩ Succ x ∎)) h (inr (w , refl)) (inl refl) = 𝟘-elim (Zero-not-Succ (Zero =⟨ (min-eq₃ u)⁻¹ ⟩ min (u , v) =⟨ r ⟩ Succ x ∎)) h (inr (w , refl)) (inr (t , refl)) = refl , refl , Succ-lc (Succ x =⟨ r ⁻¹ ⟩ min (Succ w , Succ t) =⟨ min-eq₂ w t ⟩ Succ (min (w , t)) ∎) \end{code} Relation of min with ≼ defined in the module GenericConvergentSequence. \begin{code} ≼-min-l : (u v : ℕ∞) → min (u , v) ≼ u ≼-min-l u v zero p = γ where a : min (u , v) = Succ (Pred (min (u , v))) a = positive-equal-Succ fe₀ (p ∶ zero ⊏ min (u , v)) b : u = Succ (Pred u) b = pr₁ (min-Succ u v (Pred (min (u , v))) a) γ : zero ⊏ u γ = ap (λ - → ι - zero) b ≼-min-l u v (succ n) p = γ where a : min (u , v) = Succ (Pred (min (u , v))) a = positive-equal-Succ fe₀ (⊏-positive (succ n) (min (u , v)) p) b : (u = Succ (Pred u)) × (v = Succ (Pred v)) × (Pred (min (u , v)) = min (Pred u , Pred v)) b = min-Succ u v (Pred (min (u , v))) a q : n ⊏ Pred (min (u , v)) q = p ∶ succ n ⊏ min (u , v) r : n ⊏ min (Pred u , Pred v) r = transport (λ - → n ⊏ -) (pr₂ (pr₂ b)) q IH : n ⊏ Pred u IH = ≼-min-l (Pred u) (Pred v) n r γ : succ n ⊏ u γ = IH ≼-min-r : (u v : ℕ∞) → min (u , v) ≼ v ≼-min-r u v n p = ≼-min-l v u n q where q : n ⊏ min (v , u) q = transport (λ - → n ⊏ -) (min-commutative u v) p ≼-from-min→ : (u v : ℕ∞) → min (u , v) = u → u ≼ v ≼-from-min→ u v p = transport (λ - → - ≼ v) p (≼-min-r u v) \end{code}