module Order where

open import Logic
open import Naturals
open import Addition
open import Equality

_≤_ :     Ω
x  y =  \(n : )  x + n  y

_<_ :     Ω
x < y =  \(n : )  x + n + 1  y

infix 30 _<_
infix 30 _≤_

-- This is how we are going to write inequality proofs (when possible):

less-proof : {x : }  (n : )  x < x + n + 1
less-proof n = ∃-intro n reflexivity