-- By Martin Escardo, 2 September 2011. -- (Rewritten December 2011 to define ℕ∞ as a type.) -- -- This is a formal constructive proof in the sense of ML type theory, -- written in Agda notation. -- -- It is based on the author's paper -- --------------------------------------------------------------- -- Infinite sets that satisfy the principle of omniscience -- in all varieties of constructive mathematics --------------------------------------------------------------- -- -- http://www.cs.bham.ac.uk/~mhe/papers/omniscient.pdf -- -- -- to be presented at the Types'2011 meeting in Bergen, Norway, -- September 8-11, -- -- Theorem-3·6 of that paper is proved in the module -- DrinkerParadox. This module derives the main corollary, the fact -- that the infinite set ℕ∞, defined in the module -- GenericConvergentSequence, satisfies the principle of omniscience. -- ---------------------------------------------------------------------- -- You can click at any word or symbol to navigate to the module that -- defines it in the html rendering of this set of agda modules. ---------------------------------------------------------------------- -- -- The Agda files are collected together at -- -- http://www.cs.bham.ac.uk/~mhe/papers/omniscient-new.zip module AnInfiniteOmniscientSet where open import Logic open import Equality open import Naturals open import Two open import Cantor open import GenericConvergentSequence open import DrinkerParadox Theorem[ℕ∞-is-omniscient] : ---------------------------------- ∀(p : ℕ∞ → ₂) → extensional p → (∃ \(u : ℕ∞) → p u ≡ ₀) ∨ (∀ (u : ℕ∞) → p u ≡ ₁) ---------------------------------- Theorem[ℕ∞-is-omniscient] p extensionality-of-p = two-equality-cases case₀ case₁ where e : ∃ \(u : ℕ∞) → p u ≡ ₁ → ∀(v : ℕ∞) → p v ≡ ₁ e = Theorem-3·6 p extensionality-of-p u : ℕ∞ u = ∃-witness e case₀ : p u ≡ ₀ → (∃ \(u : ℕ∞) → p u ≡ ₀) ∨ (∀ (u : ℕ∞) → p u ≡ ₁) case₀ r = ∨-intro₀(∃-intro u r) case₁ : p u ≡ ₁ → (∃ \(u : ℕ∞) → p u ≡ ₀) ∨ (∀ (u : ℕ∞) → p u ≡ ₁) case₁ r = ∨-intro₁(∃-elim e r)