module Logic where

-- The universe of propositions is denoted by Prp. By the Curry-Howard
-- isomorphism, it is the universe of types, sometimes called sets in
-- Agda. I like to keep a mental distinction between a proposition and
-- a set though. Sometimes a type is to be thought of as a set, and
-- sometimes as a proposition, at least if one wants the development to
-- be somewhat intellegible to non-type-theorists.

Prp = Set

-- False:

data  : Prp where
-- nothing defined here: there are no constructors of this type.

⊥-elim : {A : Prp}    A
⊥-elim = λ ()

¬_ : Prp  Prp
¬ A = (A  )

infix  50 ¬_

data _∧_ (A₀ A₁ : Prp) : Prp where
  ∧-intro : A₀  A₁  A₀  A₁

infixr 10 _∧_


∧-elim₀ : {A₀ A₁ : Prp} 
---------------
 A₀  A₁  A₀
---------------
∧-elim₀ (∧-intro a₀ a₁) = a₀


∧-elim₁ : {A₀ A₁ : Prp} 
---------------
 A₀  A₁  A₁
---------------
∧-elim₁ (∧-intro a₀ a₁) = a₁


data _∨_ (A₀ A₁ : Prp) : Prp where
  ∨-intro₀ : A₀  A₀  A₁
  ∨-intro₁ : A₁  A₀  A₁

infixr 20 _∨_


∨-elim : {A₀ A₁ B : Prp} 
----------------------------------
 (A₀  B)  (A₁  B)  A₀  A₁  B
----------------------------------
∨-elim f₀ f₁ (∨-intro₀ a₀) = f₀ a₀
∨-elim f₀ f₁ (∨-intro₁ a₁) = f₁ a₁


record  {X : Set} (A : X  Prp) : Prp where
 constructor ∃-intro
 field
  ∃-witness : X
  ∃-elim : A ∃-witness


∃-witness : {X : Set} {A : X  Prp} 
----------------------------
 ( \(x : X)  A x)  X
----------------------------
∃-witness (∃-intro x a) = x


∃-elim : {X : Set} {A : X  Prp} 
------------------------------------------------------
 (proof :  \(x : X)  A x)  A (∃-witness proof)
------------------------------------------------------
∃-elim(∃-intro x a) = a


-- Some basic logical facts:

_∘_ : {A B : Prp} {C : B  Prp} 
----------------------------------------------------
 (∀(b : B)  C b)  ∀(f : A  B)  ∀(a : A)  C(f a)
----------------------------------------------------
g  f = λ x  g(f x)

infixl 30 _∘_

-- The following is usually used with R=⊥:

contra-positive : {R A B : Prp} 
----------------------------
 (A  B)  (B  R)  (A  R)
----------------------------
contra-positive f p = p  f