module Logic where
Prp = Set
data ⊥ : Prp where
⊥-elim : {A : Prp} → ⊥ → A
⊥-elim = λ ()
¬_ : Prp → Prp
¬ A = (A → ⊥)
infix 50 ¬_
data _∧_ (A₀ A₁ : Prp) : Prp where
∧-intro : A₀ → A₁ → A₀ ∧ A₁
infixr 10 _∧_
∧-elim₀ : {A₀ A₁ : Prp} →
A₀ ∧ A₁ → A₀
∧-elim₀ (∧-intro a₀ a₁) = a₀
∧-elim₁ : {A₀ A₁ : Prp} →
A₀ ∧ A₁ → A₁
∧-elim₁ (∧-intro a₀ a₁) = a₁
data _∨_ (A₀ A₁ : Prp) : Prp where
∨-intro₀ : A₀ → A₀ ∨ A₁
∨-intro₁ : A₁ → A₀ ∨ A₁
infixr 20 _∨_
∨-elim : {A₀ A₁ B : Prp} →
(A₀ → B) → (A₁ → B) → A₀ ∨ A₁ → B
∨-elim f₀ f₁ (∨-intro₀ a₀) = f₀ a₀
∨-elim f₀ f₁ (∨-intro₁ a₁) = f₁ a₁
record ∃ {X : Set} (A : X → Prp) : Prp where
constructor ∃-intro
field
∃-witness : X
∃-elim : A ∃-witness
∃-witness : {X : Set} {A : X → Prp} →
(∃ \(x : X) → A x) → X
∃-witness (∃-intro x a) = x
∃-elim : {X : Set} {A : X → Prp} →
(proof : ∃ \(x : X) → A x) → A (∃-witness proof)
∃-elim(∃-intro x a) = a
_∘_ : {A B : Prp} {C : B → Prp} →
(∀(b : B) → C b) → ∀(f : A → B) → ∀(a : A) → C(f a)
g ∘ f = λ x → g(f x)
infixl 30 _∘_
contra-positive : {R A B : Prp} →
(A → B) → (B → R) → (A → R)
contra-positive f p = p ∘ f