\begin{code}

{-# OPTIONS --safe --without-K #-}

module Slice.Family where

open import MLTT.Spartan
open import UF.Powerset-MultiUniverse
open import UF.Size

\end{code}

By `Fam_𝓤(A)`, we denote the type of families on type A with index types living in
universe `𝓤`.

\begin{code}

Fam : (𝓤 : Universe)  𝓦  ̇  𝓤   𝓦  ̇
Fam 𝓤 A = Σ I  𝓤  ̇ , (I  A)

index : {A : 𝓤  ̇ }  Fam 𝓦 A  𝓦  ̇
index (I , _) = I

\end{code}

Indexing for families.

\begin{code}

_[_] : {A : 𝓤 ̇ }  (U : Fam 𝓥 A)  index U  A
(_ , f) [ i ] = f i

infix 9 _[_]

\end{code}

Comprehension notation.

\begin{code}

compr-syntax : {A : 𝓤 ̇ } (I : 𝓦 ̇ )→ (I  A)  Fam 𝓦 A
compr-syntax I f = I , f

infix 2 compr-syntax

syntax compr-syntax I  x  e) =  e  x  I 

\end{code}

Comprehension over another family.

\begin{code}

fmap-syntax : {A : 𝓤 ̇ } {B : 𝓥 ̇ }
             (A  B)  Fam 𝓦 A  Fam 𝓦 B
fmap-syntax h (I , f) = I , h  f

infix 2 fmap-syntax

syntax fmap-syntax  x  e) U =  e  x ε U 

\end{code}

Resizing of families.

\begin{code}

resize-family : {A : 𝓤  ̇}
               (S : Fam 𝓥 A)
               index S is 𝓦 small
               Fam 𝓦 A
resize-family S (A₀ , s , e) = A₀ ,  x  S [ s x ])

\end{code}

For increased readability we will now add mechanisms for turning subsets into
families.

\begin{code}

module _
        {B : 𝓥  ̇}
        {A : 𝓤  ̇}
        (m : B  A)
       where

 subset-to-family : 𝓟 {𝓣} B  Fam (𝓣  𝓥) A
 subset-to-family S = (𝕋 S , m  𝕋-to-carrier S)

 syntax subset-to-family m S =  m , S    

module _ {A : 𝓤 ̇} where 

 subset-to-family' : 𝓟 {𝓣} A  Fam (𝓣  𝓤) A
 subset-to-family' S = subset-to-family id S
 

\end{code}