Martin Escardo 7 May 2014, 10 Oct 2014, 25 January 2018, 17 December 2022. Several equivalent formulations of the axiom of choice in HoTT/UF. We first look at choice as in the HoTT book a little bit more abstractly, where for the HoTT book we take T X = ∥ X ∥. It also makes sense to consider T = ¬¬, in connection with the double-negation shift. Choice in the HoTT book, under the assumption that X is a set and A is an X-indexed family of sets is (Π x ꞉ X , ∥ A x ∥) → ∥ Π x ꞉ X , A x ∥ (a set-indexed product of inhabited sets is inhabited). We show that, under the same assumptions, this is equivalent ∥ (Π x ꞉ X , ∥ A x ∥ → A x) ∥. Notice that, as shown in the HoTT book, the statement (B : 𝓤 ̇ ) → ∥ B ∥ → B is in contradiction with the univalence axiom (we cannot reveal secrets in general). However, univalent choice is consistent with the univalent axiom, and, moreover, gives that ∥(B : 𝓤 ̇ ) → ∥ ∥ B ∥ → B ∥ (one can secretly reveal secrets always), which is equivalent to choice where X is a proposition (see https://arxiv.org/abs/1610.03346). \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import UF.DiscreteAndSeparated open import UF.Base open import UF.ClassicalLogic open import UF.FunExt open import UF.LeftCancellable open import UF.Powerset open import UF.PropTrunc open import UF.Sets open import UF.Sets-Properties open import UF.Subsingletons open import UF.Subsingletons-FunExt open import UF.Subsingletons-Properties open import UF.SubtypeClassifier open import UF.SubtypeClassifier-Properties module UF.Choice where module Shift (T : {𝓤 : Universe} → 𝓤 ̇ → 𝓤 ̇ ) (T-functor : {𝓤 𝓥 : Universe} {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → (X → Y) → T X → T Y) where \end{code} The T-shift for a family A : X → 𝓤 ̇ is (Π x ꞉ X , T (A x)) → T (Π x ꞉ X , A x). We observe that this is equivalent to T (Π x ꞉ X , T (A x) → A x) This generalizes the fact that the double negation shift is equivalent to ¬¬ (Π x ꞉ X , A x + ¬ (A x)) or ¬¬ (Π x ꞉ X , ¬¬ A x → A x) \begin{code} Shift : {𝓤 𝓥 : Universe} → (𝓤 ⊔ 𝓥)⁺ ̇ Shift {𝓤} {𝓥} = (X : 𝓤 ̇ ) (A : X → 𝓥 ̇ ) → (Π x ꞉ X , T (A x)) → T (Π x ꞉ X , A x) Shift' : {𝓤 𝓥 : Universe} → (𝓤 ⊔ 𝓥)⁺ ̇ Shift' {𝓤} {𝓥} = (X : 𝓤 ̇ ) (A : X → 𝓥 ̇ ) → T (Π x ꞉ X , (T (A x) → A x)) Shift-gives-Shift' : Shift {𝓤} {𝓤} → Shift' {𝓤} {𝓤} Shift-gives-Shift' {𝓤} s X A = s X (λ x → T (A x) → A x) (λ x → F s (A x)) where F : Shift → (X : 𝓤 ̇ ) → T (T X → X) F s X = s (T X) (λ _ → X) (λ x → x) Shift'-gives-Shift : Shift' {𝓤} {𝓥} → Shift {𝓤} {𝓥} Shift'-gives-Shift s' X A φ = T-functor (F φ) (s' X A) where F : ((x : X) → T (A x)) → ((x : X) → T (A x) → A x) → (x : X) → A x F φ ψ x = ψ x (φ x) \end{code} We now add the above constraints of the HoTT book for choice, but abstractly, where T may be ∥_∥ and S may be is-set. \begin{code} module TChoice (T : {𝓤 : Universe} → 𝓤 ̇ → 𝓤 ̇ ) (T-functor : {𝓤 𝓥 : Universe} {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → (X → Y) → T X → T Y) (S : {𝓤 : Universe} → 𝓤 ̇ → 𝓤 ̇ ) (S-exponential-ideal : {𝓤 𝓥 : Universe} {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → S Y → S (X → Y)) (T-is-S : {𝓤 : Universe} {X : 𝓤 ̇ } → S (T X)) where TAC : {𝓤 𝓥 : Universe} → (𝓤 ⊔ 𝓥)⁺ ̇ TAC {𝓤} {𝓥} = (X : 𝓤 ̇ ) (A : X → 𝓥 ̇ ) → S X → (Π x ꞉ X , S (A x)) → ((x : X) → T (A x)) → T (Π x ꞉ X , A x) TAC' : {𝓤 𝓥 : Universe} → (𝓤 ⊔ 𝓥)⁺ ̇ TAC' {𝓤} {𝓥} = (X : 𝓤 ̇ ) (A : X → 𝓥 ̇ ) → S X → (Π x ꞉ X , S (A x)) → T (Π x ꞉ X , (T (A x) → A x)) T-lemma : TAC → (X : 𝓤 ̇ ) → S X → T (T X → X) T-lemma tac X s = tac (T X) (λ _ → X) T-is-S (λ x → s) (λ x → x) TAC-gives-TAC' : TAC {𝓤} {𝓤} → TAC' {𝓤} {𝓤} TAC-gives-TAC' tac X A s t = tac X (λ x → T (A x) → A x) s (λ x → S-exponential-ideal (t x)) (λ x → T-lemma tac (A x) (t x)) TAC'-gives-TAC : TAC' {𝓤} {𝓥} → TAC {𝓤} {𝓥} TAC'-gives-TAC c' X A s t φ = T-functor (λ ψ x → ψ x (φ x)) (c' X A s t) \end{code} January 2018. We now implement the examples discussed above, which give characterizations choice as in the HoTT book, which we refer to as Univalent Choice. \begin{code} module Univalent-Choice (fe : FunExt) (pt : propositional-truncations-exist) where open PropositionalTruncation pt open TChoice ∥_∥ ∥∥-functor is-set (λ Y-is-set → Π-is-set (fe _ _) (λ _ → Y-is-set)) (props-are-sets ∥∥-is-prop) AC : {𝓤 𝓥 : Universe} → (𝓤 ⊔ 𝓥) ⁺ ̇ AC {𝓤} {𝓥} = (X : 𝓤 ̇ ) (A : X → 𝓥 ̇ ) (P : (x : X) → A x → 𝓥 ̇ ) → is-set X → ((x : X) → is-set (A x)) → ((x : X) (a : A x) → is-prop (P x a)) → ((x : X) → ∃ a ꞉ A x , P x a) → ∃ f ꞉ Π A , ((x : X) → P x (f x)) AC₁ : {𝓤 𝓥 : Universe} → (𝓤 ⊔ 𝓥)⁺ ̇ AC₁ {𝓤} {𝓥} = (X : 𝓤 ̇ ) (A : X → 𝓥 ̇ ) → is-set X → ((x : X) → is-set (A x)) → (Π x ꞉ X , ∥ A x ∥) → ∥(Π x ꞉ X , A x)∥ AC₂ : {𝓤 𝓥 : Universe} → (𝓤 ⊔ 𝓥)⁺ ̇ AC₂ {𝓤} {𝓥} = (X : 𝓤 ̇ ) (A : X → 𝓥 ̇ ) → is-set X → ((x : X) → is-set (A x)) → ∥(Π x ꞉ X , (∥ A x ∥ → A x))∥ Axiom-of-Choice Axiom-of-Choice₁ Axiom-of-Choice₂ : 𝓤ω Axiom-of-Choice = {𝓤 𝓥 : Universe} → AC {𝓤} {𝓥} Axiom-of-Choice₁ = {𝓤 𝓥 : Universe} → AC₁ {𝓤} {𝓥} Axiom-of-Choice₂ = {𝓤 𝓥 : Universe} → AC₂ {𝓤} {𝓥} AC-gives-AC₁ : AC {𝓤} {𝓥} → AC₁ {𝓤} {𝓥} AC-gives-AC₁ ac X A i j f = h where g : ∃ f ꞉ Π A , (X → 𝟙) g = ac X A (λ x a → 𝟙) i j ( λ x a → 𝟙-is-prop) (λ x → ∥∥-functor (λ z → z , ⋆) (f x)) h : ∥ Π A ∥ h = ∥∥-functor pr₁ g AC₁-gives-AC : AC₁ {𝓤} {𝓥} → AC {𝓤} {𝓥} AC₁-gives-AC ac₁ X A P s t i f = ∥∥-functor ΠΣ-distr g where g : ∥(Π x ꞉ X , Σ a ꞉ A x , P x a)∥ g = ac₁ X (λ x → Σ a ꞉ A x , P x a) s (λ x → subsets-of-sets-are-sets (A x) (P x) (t x) (λ {a} → i x a)) f AC₁-gives-AC₂ : AC₁ {𝓤} {𝓤} → AC₂ {𝓤} {𝓤} AC₁-gives-AC₂ = TAC-gives-TAC' AC₂-gives-AC₁ : AC₂ {𝓤} {𝓥} → AC₁ {𝓤} {𝓥} AC₂-gives-AC₁ = TAC'-gives-TAC secretly-revealing-secrets : AC₁ → (B : 𝓤 ̇ ) → is-set B → ∥(∥ B ∥ → B)∥ secretly-revealing-secrets = T-lemma \end{code} But choice implies excluded middle. Provided we have quotients. In fact, the quotient 𝟚/P of 𝟚 by the relation R ₀ ₁ = P, for any given proposition P, suffices. In that case, we conclude that, assuming function extensionality, AC is equivalent to EM × DNS. What if we don't (necessarily) have the quotient 𝟚/P for an arbitrary proposition P? We get from AC that all sets have decidable equality. This is because the quotient 𝟚/(a₀=a₁), for two points a₀ and a₁ of a set X can be constructed as the image of the map a : 𝟚 → X with values a ₀ = a₀ and a ₁ = a₁. \begin{code} module ExcludedMiddle (pt : propositional-truncations-exist) (fe : FunExt) where open PropositionalTruncation pt open Univalent-Choice fe pt open import UF.ImageAndSurjection pt \end{code} I originally proved this on 1st April 2013. \begin{code} decidability-lemma : {X : 𝓤 ̇ } (a : 𝟚 → X) → ((x : X) → (∃ i ꞉ 𝟚 , a i = x) → Σ i ꞉ 𝟚 , a i = x) → is-decidable (a ₀ = a ₁) decidability-lemma a c = claim (𝟚-is-discrete (s(r ₀)) (s(r ₁))) where r : 𝟚 → image a r = corestriction a r-splits : (y : image a) → Σ i ꞉ 𝟚 , r i = y r-splits (x , t) = f (c x t) where f : (Σ i ꞉ 𝟚 , a i = x) → Σ i ꞉ 𝟚 , r i = (x , t) f (i , p) = i , to-Σ-= (p , ∥∥-is-prop _ t) s : image a → 𝟚 s y = pr₁(r-splits y) rs : (y : image a) → r(s y) = y rs y = pr₂(r-splits y) s-lc : left-cancellable s s-lc = section-lc s (r , rs) a-r : {i j : 𝟚} → a i = a j → r i = r j a-r p = to-Σ-= (p , ∥∥-is-prop _ _) r-a : {i j : 𝟚} → r i = r j → a i = a j r-a = ap pr₁ a-s : {i j : 𝟚} → a i = a j → s(r i) = s(r j) a-s p = ap s (a-r p) s-a : {i j : 𝟚} → s(r i) = s(r j) → a i = a j s-a p = r-a (s-lc p) claim : is-decidable (s(r ₀) = s(r ₁)) → is-decidable (a ₀ = a ₁) claim (inl p) = inl (s-a p) claim (inr u) = inr (contrapositive a-s u) decidability-lemma₂ : {X : 𝓤 ̇ } → is-set X → (a : 𝟚 → X) → ∥((x : X) → (∃ i ꞉ 𝟚 , a i = x) → Σ i ꞉ 𝟚 , a i = x)∥ → is-decidable (a ₀ = a ₁) decidability-lemma₂ i a = ∥∥-rec (decidability-of-prop-is-prop (fe _ _) i) (decidability-lemma a) ac-renders-all-sets-discrete' : AC {𝓤} {𝓤} → (X : 𝓤 ̇ ) → is-set X → (a : 𝟚 → X) → is-decidable (a ₀ = a ₁) ac-renders-all-sets-discrete' {𝓤} ac X i a = decidability-lemma₂ i a (ac₂ X A i j) where A : X → 𝓤 ̇ A x = Σ i ꞉ 𝟚 , a i = x j : (x : X) → is-set (A x) j x = subsets-of-sets-are-sets 𝟚 (λ i → a i = x) 𝟚-is-set i ac₂ : AC₂ {𝓤} {𝓤} ac₂ = AC₁-gives-AC₂ (AC-gives-AC₁ ac) ac-renders-all-sets-discrete : AC {𝓤} {𝓤} → (X : 𝓤 ̇ ) → is-set X → (a₀ a₁ : X) → is-decidable (a₀ = a₁) ac-renders-all-sets-discrete {𝓤} ac X isx a₀ a₁ = ac-renders-all-sets-discrete' {𝓤} ac X isx (𝟚-cases a₀ a₁) AC-gives-EM : PropExt → AC {𝓤 ⁺} {𝓤 ⁺} → EM 𝓤 AC-gives-EM {𝓤} pe ac = Ω-discrete-gives-EM (fe _ _) (pe _) (ac-renders-all-sets-discrete {𝓤 ⁺} ac (Ω 𝓤) (Ω-is-set (fe 𝓤 𝓤) (pe 𝓤))) Choice-gives-Excluded-Middle : PropExt → Axiom-of-Choice → Excluded-Middle Choice-gives-Excluded-Middle pe ac {𝓤} = AC-gives-EM {𝓤} pe (ac {𝓤 ⁺}) \end{code} Is there a way to define the quotient 𝟚/P for an arbitrary proposition P, in the universe 𝓤, using propositional truncation as the only HIT, and funext, propext? We could allow, more generally, univalence. If so, then, under these conditions, AC is equivalent to excluded middle together with the double-negation shift for set-indexed families of sets. If we assume choice for 𝓤₁ we get excluded middle at 𝓤₀. This is because the quotient 𝟚/P, for a proposition P in 𝓤₀, exists in 𝓤₁. In fact, it is the image of the map 𝟚→Prop that sends ₀ to 𝟙 and ₁ to P, because (𝟙=P)=P. Now, assuming excluded middle, choice is equivalent to the double negation shift. \begin{code} module DNS (pt : propositional-truncations-exist) (fe : FunExt) where open PropositionalTruncation pt open Univalent-Choice fe pt open ExcludedMiddle pt fe DNS : {𝓤 𝓥 : Universe} → (𝓤 ⊔ 𝓥)⁺ ̇ DNS {𝓤} {𝓥} = (X : 𝓤 ̇ ) (A : X → 𝓥 ̇ ) → is-set X → ((x : X) → is-set (A x)) → (Π x ꞉ X , ¬¬ A x) → ¬¬ (Π x ꞉ X , A x) Double-Negation-Shift : 𝓤ω Double-Negation-Shift = {𝓤 𝓥 : Universe} → DNS {𝓤} {𝓥} private α : {X : 𝓤 ̇ } → ∥ X ∥ → ¬¬ X α = inhabited-is-nonempty β : EM 𝓤 → {X : 𝓤 ̇ } → ¬¬ X → ∥ X ∥ β = non-empty-is-inhabited pt γ : {X : 𝓤 ̇ } → is-set (¬¬ X) γ = props-are-sets (negations-are-props (fe _ _)) δ : {𝓤 𝓥 : Universe} → {X : 𝓤 ̇ } {A : 𝓥 ̇ } → is-set A → is-set (X → A) δ {𝓤} {𝓥} A-is-set = Π-is-set (fe _ _) (λ _ → A-is-set) EM-and-AC₁-give-DNS : EM 𝓥 → AC₁ {𝓤} {𝓥} → DNS {𝓤} {𝓥} EM-and-AC₁-give-DNS em ac X A i j f = α (ac X A i j (λ x → β em (f x))) EM-and-DNS-give-AC₁ : EM (𝓤 ⊔ 𝓥) → DNS {𝓤} {𝓥} → AC₁ {𝓤} {𝓥} EM-and-DNS-give-AC₁ em dns X A i j g = β em (dns X A i j (λ x → α (g x))) \end{code} DNS for prop-valued A, written DNS' below, is equivalent to the double negation of the (universally quantified) principle of excluded middle. \begin{code} DNS' : {𝓤 𝓥 : Universe} → (𝓤 ⊔ 𝓥)⁺ ̇ DNS' {𝓤} {𝓥} = (X : 𝓤 ̇ ) (A : X → 𝓥 ̇ ) → is-set X → ((x : X) → is-prop (A x)) → (Π x ꞉ X , ¬¬ A x) → ¬¬ (Π x ꞉ X , A x) DNS-gives-DNS' : DNS {𝓤} {𝓥} → DNS' {𝓤} {𝓥} DNS-gives-DNS' dns X A i j = dns X A i (λ x → props-are-sets (j x)) DNS'-gives-¬¬EM : propext 𝓤 → DNS' {𝓤 ⁺} {𝓤} → ¬¬ EM 𝓤 DNS'-gives-¬¬EM {𝓤} pe dns' = ¬¬-functor (λ f P i → f (P , i)) I where A : Ω 𝓤 → 𝓤 ̇ A (P , i) = P + ¬ P j : (p : Ω 𝓤) → is-prop (A p) j (P , i) = decidability-of-prop-is-prop (fe _ _) i I : ¬¬ (((P , i) : Ω 𝓤) → P + ¬ P) I = dns' (Ω 𝓤) A (Ω-is-set (fe _ _) pe) (λ (P , i) → decidability-of-prop-is-prop (fe _ _) i) (λ _ → fake-¬¬-EM) ¬¬EM-gives-DNS' : ¬¬ EM 𝓤 → DNS' {𝓤} {𝓤} ¬¬EM-gives-DNS' {𝓤} nnem X A X-is-set A-is-prop-valued f = ¬¬-functor g nnem where g : EM 𝓤 → (x : X) → A x g em x = EM-gives-DNE em (A x) (A-is-prop-valued x) (f x) \end{code} In the presence of propositional extensionality, the axiom of choice is equivalent to the conjunction of the principle of excluded middle and the double negation shift for set-valued (rather than prop-valued) predicates, which seems to be a new result: \begin{code} Choice-gives-Double-Negation-Shift : PropExt → Axiom-of-Choice₁ → Double-Negation-Shift Choice-gives-Double-Negation-Shift pe ac {𝓤} {𝓥} = III where em : Excluded-Middle em = AC-gives-EM pe (AC₁-gives-AC ac) III : DNS {𝓤} {𝓥} III = EM-and-AC₁-give-DNS em ac Double-Negation-Shift-gives-Choice : Excluded-Middle → Double-Negation-Shift → Axiom-of-Choice₁ Double-Negation-Shift-gives-Choice em dns {𝓤} {𝓥} = EM-and-DNS-give-AC₁ em (dns {𝓤} {𝓥}) \end{code} And here is an equivalent variant of DNS: \begin{code} DNA : {𝓤 𝓥 : Universe} → 𝓤 ⁺ ̇ DNA {𝓤} {𝓥} = (X : 𝓤 ̇ ) (A : X → 𝓤 ̇ ) → is-set X → ((x : X) → is-set (A x)) → ¬¬ (Π x ꞉ X , (¬¬ A x → A x)) open TChoice DNS-gives-DNA : DNS {𝓤} {𝓤} → DNA {𝓤} {𝓥} DNS-gives-DNA = TAC-gives-TAC' ¬¬_ ¬¬-functor is-set δ γ DNA-gives-DNS : DNA {𝓤} {𝓥} → DNS {𝓤} {𝓤} DNA-gives-DNS = TAC'-gives-TAC ¬¬_ ¬¬-functor is-set δ γ \end{code} Added 17th December 2022: \begin{code} module choice-functions (pt : propositional-truncations-exist) (pe : PropExt) (fe : FunExt) where open PropositionalTruncation pt open Univalent-Choice fe pt open ExcludedMiddle pt fe open UF.Powerset.inhabited-subsets pt Choice-Function : 𝓤 ̇ → 𝓤 ⁺ ̇ Choice-Function X = ∃ ε ꞉ (𝓟⁺ X → X) , ((𝓐 : 𝓟⁺ X) → ε 𝓐 ∈⁺ 𝓐) AC₃ : {𝓤 : Universe} → 𝓤 ⁺ ̇ AC₃ {𝓤} = (X : 𝓤 ̇ ) → is-set X → Choice-Function X AC-gives-AC₃ : {𝓤 : Universe} → AC {𝓤 ⁺} {𝓤} → AC₃ {𝓤} AC-gives-AC₃ ac X X-is-set = ac (𝓟⁺ X) (λ (𝓐 : 𝓟⁺ X) → X) (λ ((A , i) : 𝓟⁺ X) (x : X) → x ∈ A) (𝓟⁺-is-set' (fe _ _) (pe _)) (λ (_ : 𝓟⁺ X) → X-is-set) (λ (A , i) x → ∈-is-prop A x) (λ (A , i) → i) AC₃-gives-AC₁ : {𝓤 𝓥 : Universe} → AC₃ {𝓤 ⊔ 𝓥} → AC₁ {𝓤} {𝓥} AC₃-gives-AC₁ {𝓤} {𝓥} ac₃ X A X-is-set A-is-set-valued = V where X' : 𝓤 ⊔ 𝓥 ̇ X' = Σ x ꞉ X , A x X'-is-set : is-set X' X'-is-set = Σ-is-set X-is-set A-is-set-valued I : ∃ ε ꞉ (𝓟⁺ X' → X') , ((𝓐 : 𝓟⁺ X') → ε 𝓐 ∈⁺ 𝓐) I = ac₃ X' X'-is-set II : (Π x ꞉ X , ∥ A x ∥) → (Σ ε ꞉ (𝓟⁺ X' → X') , ((𝓐 : 𝓟⁺ X') → ε 𝓐 ∈⁺ 𝓐)) → (Π x ꞉ X , A x) II g (ε , ϕ) x = IV where C : 𝓟 X' C (x₀ , a₀) = ((x₀ = x) × ∥ A x ∥) , ×-is-prop X-is-set ∥∥-is-prop j : is-inhabited C j = ∥∥-functor (λ a → (x , a) , (refl , ∣ a ∣)) (g x) x' : X' x' = ε (C , j) x₀ : X x₀ = pr₁ x' a₀ : A x₀ a₀ = pr₂ x' III : (x₀ = x) × ∥ A x ∥ III = ϕ (C , j) IV : A x IV = transport A (pr₁ III) a₀ V : (Π x ꞉ X , ∥ A x ∥) → ∥(Π x ꞉ X , A x)∥ V g = ∥∥-functor (II g) I AC₃-gives-AC : {𝓤 𝓥 : Universe} → AC₃ {𝓤 ⊔ 𝓥} → AC {𝓤} {𝓥} AC₃-gives-AC ac₃ = AC₁-gives-AC (AC₃-gives-AC₁ ac₃) Axiom-of-Choice₃ : 𝓤ω Axiom-of-Choice₃ = {𝓤 : Universe} → AC₃ {𝓤} Choice-gives-Choice₃ : Axiom-of-Choice → Axiom-of-Choice₃ Choice-gives-Choice₃ c {𝓤} = AC-gives-AC₃ {𝓤} (c {𝓤 ⁺} {𝓤}) Choice₃-gives-Choice : Axiom-of-Choice₃ → Axiom-of-Choice Choice₃-gives-Choice c {𝓤} {𝓥} = AC₃-gives-AC {𝓤} {𝓥} (c {𝓤 ⊔ 𝓥}) Choice-Function⁻ : 𝓤 ̇ → 𝓤 ⁺ ̇ Choice-Function⁻ X = ∃ ε ꞉ (𝓟 X → X) , ((A : 𝓟 X) → is-inhabited A → ε A ∈ A) AC₄ : {𝓤 : Universe} → 𝓤 ⁺ ̇ AC₄ {𝓤} = (X : 𝓤 ̇ ) → is-set X → ∥ X ∥ → Choice-Function⁻ X Axiom-of-Choice₄ : 𝓤ω Axiom-of-Choice₄ = {𝓤 : Universe} → AC₄ {𝓤} improve-choice-function : EM 𝓤 → {X : 𝓤 ̇ } → Choice-Function X → ∥ X ∥ → Choice-Function⁻ X improve-choice-function em {X} c s = III where I : (Σ ε⁺ ꞉ (𝓟⁺ X → X) , (((A , i) : 𝓟⁺ X) → (ε⁺ (A , i) ∈ A))) → (Σ ε⁺ ꞉ (𝓟⁺ X → X) , ((A : 𝓟 X) (i : is-inhabited A) → ε⁺ (A , i) ∈ A)) I = NatΣ (λ (ε⁺ : 𝓟⁺ X → X) ε⁺-behaviour A i → ε⁺-behaviour (A , i)) II : (Σ ε⁺ ꞉ (𝓟⁺ X → X) , ((A : 𝓟 X) (i : is-inhabited A) → ε⁺ (A , i) ∈ A)) → X → (Σ ε ꞉ (𝓟 X → X) , ((A : 𝓟 X) → is-inhabited A → ε A ∈ A)) II (ε⁺ , f) x = ε , ε-behaviour where ε' : (A : 𝓟 X) → is-decidable (is-inhabited A) → X ε' A (inl i) = ε⁺ (A , i) ε' A (inr ν) = x d : (A : 𝓟 X) → is-decidable (is-inhabited A) d A = em (is-inhabited A) (being-inhabited-is-prop A) ε : 𝓟 X → X ε A = ε' A (d A) ε'-behaviour : (A : 𝓟 X) → is-inhabited A → (δ : is-decidable (is-inhabited A)) → ε' A δ ∈ A ε'-behaviour A _ (inl j) = f A j ε'-behaviour A i (inr ν) = 𝟘-elim (ν i) ε-behaviour : (A : 𝓟 X) → is-inhabited A → ε A ∈ A ε-behaviour A i = ε'-behaviour A i (d A) III : Choice-Function⁻ X III = ∥∥-rec ∃-is-prop (λ x → ∥∥-rec ∃-is-prop (λ σ → ∣ II (I σ) x ∣) c) s Choice-gives-Choice₄ : Axiom-of-Choice → Axiom-of-Choice₄ Choice-gives-Choice₄ ac X X-is-set = improve-choice-function (AC-gives-EM pe ac) (AC-gives-AC₃ ac X X-is-set) \end{code} End of addition. The following is probably not going to be useful for anything here, but it is stronger than the above decidability lemma: \begin{code} module Observation (fe : FunExt) where decidability-observation : {X : 𝓤 ̇ } (a : 𝟚 → X) → ((x : X) → ¬¬ (Σ i ꞉ 𝟚 , a i = x) → Σ i ꞉ 𝟚 , a i = x) → is-decidable (a ₀ = a ₁) decidability-observation {𝓤} {X} a c = claim (𝟚-is-discrete (s(r ₀)) (s(r ₁))) where Y = Σ x ꞉ X , ¬¬ (Σ i ꞉ 𝟚 , a i = x) r : 𝟚 → Y r i = a i , λ u → u (i , refl) r-splits : (y : Y) → Σ i ꞉ 𝟚 , r i = y r-splits (x , t) = f (c x t) where f : (Σ i ꞉ 𝟚 , a i = x) → Σ i ꞉ 𝟚 , r i = (x , t) f (i , p) = i , to-Σ-= (p , negations-are-props (fe 𝓤 𝓤₀) _ t) s : Y → 𝟚 s y = pr₁(r-splits y) rs : (y : Y) → r(s y) = y rs y = pr₂(r-splits y) s-lc : left-cancellable s s-lc = section-lc s (r , rs) a-r : {i j : 𝟚} → a i = a j → r i = r j a-r p = to-Σ-= (p , negations-are-props (fe 𝓤 𝓤₀) _ _) r-a : {i j : 𝟚} → r i = r j → a i = a j r-a = ap pr₁ a-s : {i j : 𝟚} → a i = a j → s(r i) = s(r j) a-s p = ap s (a-r p) s-a : {i j : 𝟚} → s(r i) = s(r j) → a i = a j s-a p = r-a (s-lc p) claim : is-decidable (s(r ₀) = s(r ₁)) → is-decidable (a ₀ = a ₁) claim (inl p) = inl (s-a p) claim (inr u) = inr (λ p → u (a-s p)) \end{code} Added Friday 8th September 2023. The axiom of propositional choice from https://doi.org/10.23638/LMCS-13(1:15)2017 \begin{code} module Propositional-Choice (pt : propositional-truncations-exist) where open PropositionalTruncation pt PAC : {𝓤 𝓥 : Universe} → (𝓤 ⊔ 𝓥)⁺ ̇ PAC {𝓤} {𝓥} = (P : 𝓤 ̇ ) (Y : P → 𝓥 ̇ ) → is-set P → (Π p ꞉ P , ∥ Y p ∥) → ∥(Π p ꞉ P , Y p)∥ \end{code} Notice that we don't require that this is a family of sets. Notice also that excluded middle implies PAC. For more information, see Theorem 7.7 of the above reference. TODO. Add these and more facts about this. Some of them can be adapted from this Agda file: https://www.cs.bham.ac.uk/~mhe/GeneralizedHedberg/html/GeneralizedHedberg.html These addition are done in NotionsOfDecidability.SemiDecidable by Tom de Jong.