Martin Escardo, 20-21 December 2012. \begin{code} {-# OPTIONS --safe --without-K #-} module Ordinals.LexicographicCompactness where open import MLTT.Spartan open import Ordinals.InfProperty open import Ordinals.LexicographicOrder Σ-has-inf : ∀ {𝓣} {X : 𝓤 ̇ } {Y : X → 𝓥 ̇ } → (_≤_ : X → X → 𝓦 ̇ ) → (_≼_ : {x : X} → Y x → Y x → 𝓣 ̇ ) → has-inf _≤_ → ((x : X) → has-inf (_≼_ {x})) → has-inf (lex-order _≤_ _≼_) Σ-has-inf {𝓤} {𝓥} {𝓦} {𝓣} {X} {Y} _≤_ _≼_ ε δ p = (x₀ , y₀) , putative-root-lemma , lower-bound-lemma , uborlb-lemma where lemma-next : (x : X) → Σ y₀ ꞉ Y x , ((Σ y ꞉ Y x , p (x , y) = ₀) → p (x , y₀) = ₀) × ((y : Y x) → p (x , y) = ₀ → y₀ ≼ y) × ((l : Y x) → ((y : Y x) → p (x , y) = ₀ → l ≼ y) → l ≼ y₀) lemma-next x = δ x (λ y → p (x , y)) next : (x : X) → Y x next x = pr₁ (lemma-next x) next-correctness : (x : X) → ((Σ y ꞉ Y x , p (x , y) = ₀) → p (x , next x) = ₀) × ((y : Y x) → p (x , y) = ₀ → next x ≼ y) × ((l : Y x) → ((y : Y x) → p (x , y) = ₀ → l ≼ y) → l ≼ next x) next-correctness x = pr₂ (lemma-next x) lemma-first : Σ x₀ ꞉ X , ((Σ x ꞉ X , p (x , next x) = ₀) → p (x₀ , next x₀) = ₀) × ((x : X) → p (x , next x) = ₀ → x₀ ≤ x) × ((m : X) → ((x : X) → p (x , next x) = ₀ → m ≤ x) → m ≤ x₀) lemma-first = ε (λ x → p (x , next x)) x₀ : X x₀ = pr₁ lemma-first first-correctness : ((Σ x ꞉ X , p (x , next x) = ₀) → p (x₀ , next x₀) = ₀) × ((x : X) → p (x , next x) = ₀ → x₀ ≤ x) × ((m : X) → ((x : X) → p (x , next x) = ₀ → m ≤ x) → m ≤ x₀) first-correctness = pr₂ lemma-first y₀ : Y x₀ y₀ = next x₀ putative-root-lemma : (Σ t ꞉ (Σ x ꞉ X , Y x) , p t = ₀) → p (x₀ , y₀) = ₀ putative-root-lemma ((x , y) , r) = pr₁ first-correctness (x , pr₁ (next-correctness x) (y , r)) _⊑_ : Σ Y → Σ Y → 𝓤 ⊔ 𝓦 ⊔ 𝓣 ̇ _⊑_ = lex-order _≤_ _≼_ τ : {x x' : X} → x = x' → Y x → Y x' τ = transport Y lower-bound-lemma : (t : (Σ x ꞉ X , Y x)) → p t = ₀ → (x₀ , y₀) ⊑ t lower-bound-lemma (x , y) r = ≤-lemma , ≼-lemma where f : p (x , next x) = ₀ → x₀ ≤ x f = pr₁ (pr₂ first-correctness) x ≤-lemma : x₀ ≤ x ≤-lemma = f (pr₁ (next-correctness x) (y , r)) g : next x ≼ y g = pr₁ (pr₂ (next-correctness x)) y r h : {x₀ x : X} (r : x₀ = x) {y : Y x} → next x ≼ y → τ r (next x₀) ≼ y h refl = id ≼-lemma : (r : x₀ = x) → τ r y₀ ≼ y ≼-lemma r = h r g uborlb-lemma : (s : Σ x ꞉ X , Y x) → ((t : Σ x ꞉ X , Y x) → p t = ₀ → s ⊑ t) → s ⊑ (x₀ , y₀) uborlb-lemma (x , y) lower-bounder = ≤-lemma , ≼-lemma where f : ((x' : X) → p (x' , next x') = ₀ → x ≤ x') → x ≤ x₀ f = pr₂ (pr₂ first-correctness) x ≤-lower-bounder : (x' : X) (y' : Y x') → p (x' , y') = ₀ → x ≤ x' ≤-lower-bounder x' y' r' = pr₁ (lower-bounder ((x' , y')) r') ≤-lemma : x ≤ x₀ ≤-lemma = f (λ x' → ≤-lower-bounder x' (next x')) g : ((y' : Y x) → p (x , y') = ₀ → y ≼ y') → y ≼ next x g = pr₂ (pr₂ (next-correctness x)) y ≼-lower-bounder : (x' : X) (y' : Y x') → p (x' , y') = ₀ → (r : x = x') → τ r y ≼ y' ≼-lower-bounder x' y' r' = pr₂ (lower-bounder ((x' , y')) r') h : {x₀ x : X} → (r : x = x₀) → {y : Y x} → y ≼ next x → τ r y ≼ next x₀ h refl = id ≼-lemma : (r : x = x₀) → τ r y ≼ y₀ ≼-lemma r = h r (g (λ y' r → ≼-lower-bounder x y' r refl)) \end{code}