Martin Escardo 20-21 December 2012 \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import MLTT.Two-Properties open import TypeTopology.CompactTypes module Ordinals.InfProperty {𝓤 𝓥} {X : 𝓤 ̇ } (_≤_ : X → X → 𝓥 ̇ ) where is-conditional-root : (X → 𝟚) → X → 𝓤 ̇ is-conditional-root p x₀ = (Σ x ꞉ X , p x = ₀) → p x₀ = ₀ is-roots-lower-bound : (X → 𝟚) → X → 𝓤 ⊔ 𝓥 ̇ is-roots-lower-bound p l = (x : X) → p x = ₀ → l ≤ x is-upper-bound-of-lower-bounds : (X → 𝟚) → X → 𝓤 ⊔ 𝓥 ̇ is-upper-bound-of-lower-bounds p u = (l : X) → is-roots-lower-bound p l → l ≤ u is-roots-infimum : (X → 𝟚) → X → 𝓤 ⊔ 𝓥 ̇ is-roots-infimum p x = is-roots-lower-bound p x × is-upper-bound-of-lower-bounds p x has-inf : 𝓤 ⊔ 𝓥 ̇ has-inf = (p : X → 𝟚) → Σ x ꞉ X , is-conditional-root p x × is-roots-infimum p x has-inf-gives-compact∙ : has-inf → is-compact∙ X has-inf-gives-compact∙ h p = f (h p) where f : (Σ x₀ ꞉ X , is-conditional-root p x₀ × is-roots-infimum p x₀) → (Σ x₀ ꞉ X , (p x₀ = ₁ → (x : X) → p x = ₁)) f (x₀ , g , _) = (x₀ , k) where g' : p x₀ ≠ ₀ → ¬ (Σ x ꞉ X , p x = ₀) g' = contrapositive g u : ¬ (Σ x ꞉ X , p x = ₀) → (x : X) → p x = ₁ u ν x = different-from-₀-equal-₁ (λ (e : p x = ₀) → ν (x , e)) k : p x₀ = ₁ → (x : X) → p x = ₁ k e = u (g' (equal-₁-different-from-₀ e)) has-inf-gives-compact : has-inf → is-compact X has-inf-gives-compact = compact∙-types-are-compact ∘ has-inf-gives-compact∙ has-inf-gives-Compact : {𝓦 : Universe} → has-inf → is-Compact X {𝓦} has-inf-gives-Compact = compact-types-are-Compact ∘ has-inf-gives-compact \end{code}