Andrew Swan, 6th February 2024 Σ-closed reflective subuniverse is one of the three definitions of modalities given in [1] (Definition 1.3). The aim of this file is to collect together results about them. For now we just have one result that is often useful in practice: for Σ-closed universes, we have not just recursion, but induction. [1] Rijke, Shulman, Spitters, Modalities in homotopy type theory, https://doi.org/10.23638/LMCS-16(1:2)2020 \begin{code} {-# OPTIONS --safe --without-K --exact-split --auto-inline #-} open import MLTT.Spartan open import UF.Base open import UF.FunExt open import Modal.Subuniverse module Modal.SigmaClosedReflectiveSubuniverse (P : subuniverse 𝓤 𝓥) (P-is-reflective : subuniverse-is-reflective P) (P-is-sigma-closed : subuniverse-is-sigma-closed P) where \end{code} A Σ-closed reflective subuniverse is in particular a reflective subuniverse, so we first import everything already proved for reflective subuniverses in general. \begin{code} open import Modal.ReflectiveSubuniverse P P-is-reflective public \end{code} We can now prove the induction principle. We do this as a direct proof from the Σ-closed condition, using it together with the recursion principle to construct a map g : ○ A → Σ a : ○ A, B a and then using uniqueness to show that composition pr₁ ∘ g is the identity on ○ A. \begin{code} ○-induction : (fe : funext 𝓤 𝓤) → (A : 𝓤 ̇) → (B : ○ A → 𝓤 ̇) → (B-modal : (α : ○ A) → is-modal (B α)) → ((a : A) → B (η A a)) → (α : ○ A) → B α ○-induction fe A B B-modal f α = transport B (happly h α) (pr₂ (g α)) where g : ○ A → Σ B g = ○-rec _ _ (P-is-sigma-closed _ _ (○-is-modal _) B-modal) λ a → (η _ a) , (f a) h : pr₁ ∘ g = id h = ○-rec-ext _ _ (○-is-modal _) _ _ (dfunext fe (λ a → ap pr₁ (○-rec-compute _ _ _ _ a))) \end{code}