Created by Ayberk Tosun, August 2024.

In this module, we collect properties of lists.

\begin{code}

{-# OPTIONS --safe --without-K --no-exact-split #-}

module MLTT.List-Properties where

open import Fin.Type
open import MLTT.Bool
open import MLTT.List
open import MLTT.Spartan
open import Naturals.Order hiding (minus)
open import Naturals.Properties
open import Notation.Order
open import UF.Base
open import UF.PropTrunc
open import UF.Subsingletons

\end{code}

The empty list has no members.

\begin{code}

not-in-empty-list : {A : 𝓤  ̇} {x : A}  ¬ member x []
not-in-empty-list ()

\end{code}

We define the list indexing function `nth` below and prove that it is a
surjection.

\begin{code}

module list-indexing (pt : propositional-truncations-exist) {X : 𝓤  ̇} where

 open PropositionalTruncation pt
 open import UF.ImageAndSurjection pt

 nth : (xs : List X)  Fin (length xs)  Σ x  X ,  member x xs 
 nth (x  _)  (inr ) = x ,  in-head 
 nth (_  xs) (inl n) = x , ∥∥-functor in-tail (pr₂ IH)
  where
   IH : Σ x  X ,  member x xs 
   IH = nth xs n

   x : X
   x = pr₁ IH

 nth-is-surjection : (xs : List X)  is-surjection (nth xs)
 nth-is-surjection []       (y , μ) = ∥∥-rec ∃-is-prop  ()) μ
 nth-is-surjection (x  xs) (y , μ) = ∥∥-rec ∃-is-prop  μ
  where
    : member y (x  xs)   i  Fin (length (x  xs)) , (nth (x  xs) i  y , μ)
    in-head     =  inr  , to-subtype-=  _  ∥∥-is-prop) refl 
    (in-tail p) = ∥∥-rec ∃-is-prop  IH
    where
     IH : (y ,  p ) ∈image nth xs
     IH = nth-is-surjection xs (y ,  p )

      : Σ i  Fin (length xs) , (nth xs i  y ,  p )
         i  Fin (length (x  xs)) , (nth (x  xs) i  y , μ)
      (i , q) =  inl i , to-subtype-=  _  ∥∥-is-prop) (pr₁ (from-Σ-= q)) 

\end{code}