--- title: Some properties of nuclei and their fixed points author: Ayberk Tosun date-started: 2025-04-25 --- \begin{code}[hide] {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import UF.FunExt open import UF.PropTrunc module Locales.NucleusImage (pt : propositional-truncations-exist) (fe : Fun-Ext) where open import Locales.ContinuousMap.FrameHomomorphism-Definition pt fe open import Locales.ContinuousMap.FrameHomomorphism-Properties pt fe open import Locales.Frame pt fe open import Locales.Nucleus pt fe open import UF.Equiv open import UF.ImageAndSurjection pt open import UF.Logic open import UF.Subsingletons open import UF.SubtypeClassifier open AllCombinators pt fe open FrameHomomorphismProperties open FrameHomomorphisms open Locale open PropositionalTruncation pt \end{code} The set of fixed points of a nucleus is equivalent to its image. This is a standard fact of locale theory; see, for example, [Joh82, p. 49]. \begin{code} fixed-points-of-nucleus-are-its-image : (X : Locale (𝓤 ⁺) 𝓤 𝓤) → (j : ⟨ 𝒪 X ⟩ → ⟨ 𝒪 X ⟩) → is-nucleus (𝒪 X) j holds → image j ≃ (Σ U ꞉ ⟨ 𝒪 X ⟩ , j U = U) fixed-points-of-nucleus-are-its-image X j 𝓃 = s , (qinvs-are-equivs s (r , r-cancels-s , s-cancels-r)) where s : image j → (Σ U ꞉ ⟨ 𝒪 X ⟩ , j U = U) s (U , p) = U , ∥∥-rec carrier-of-[ poset-of (𝒪 X) ]-is-set † p where † : (Σ V ꞉ ⟨ 𝒪 X ⟩ , j V = U) → j U = U † (V , q) = j U =⟨ Ⅰ ⟩ j (j V) =⟨ Ⅱ ⟩ j V =⟨ q ⟩ U ∎ where Ⅰ = ap j (q ⁻¹) Ⅱ = nuclei-are-idempotent (𝒪 X) (j , 𝓃) V r : (Σ U ꞉ ⟨ 𝒪 X ⟩ , j U = U) → image j r (U , p) = U , ∣ U , p ∣ s-cancels-r : s ∘ r ∼ id s-cancels-r (U , p) = to-subtype-= (λ _ → carrier-of-[ poset-of (𝒪 X) ]-is-set) refl r-cancels-s : r ∘ s ∼ id r-cancels-s (U , p) = to-subtype-= (λ - → being-in-the-image-is-prop - j) refl \end{code} [Joh82]: Peter T. Johstone. Stone Spaces. Cambridge Studies in Advanced Mathematics. Cambridge, 1982. ISBN: 978-0-521-33779-3