Martin Escardo, 6th September 2025. We construct two distinct 𝓛-algebra structures on the subtype classifier Ω, with structure maps given by Σ (the free algebra) and Π, where 𝓛 is the lifting monad, also known as the partial map classifier monad. This is just an adaptation of the fact that Σ and Π are 𝓛-structure maps on the universe, already proved in the file Lifting.Algebras, which uses univalence. We could prove that Σ and Π are structure maps on Ω by showing that a subtype of an algebra closed under the structure map is itself an algebra, and apply this to the subtype Ω of the universe. However, we want a proof that doesn't use univalence, so that it makes sense in the internal language of a 1-topos. We use propositional and functional extensionality instead, which are validated in any 1-topos. So notice that not even classically do we have "every algebra is a free algebra". What we do have classically (i.e. in boolean toposes) is that the underlying set of any algebra is isomorphic to the underlying set of a free algebra, that is, it is isomorphic to 𝓛 X for some X. Question. In an arbitrary 1-topos, is it the case that the underlying set of any algebra is isomorphic to 𝓛 X for some X? I very much doubt that this would be the case. \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan open import UF.FunExt open import UF.Subsingletons module Lifting.TwoAlgebrasOnOmega (𝓣 : Universe) (fe : Fun-Ext) (pe : propext 𝓣) where open import Lifting.Algebras 𝓣 open import UF.Base open import UF.Equiv open import UF.EquivalenceExamples open import UF.Subsingletons-FunExt open import UF.SubtypeClassifier private sum : {P : 𝓣 ̇ } → is-prop P → (P → Ω 𝓣) → Ω 𝓣 sum {P} i f = (Σ p ꞉ P , f p holds) , (Σ-is-prop i (λ p → holds-is-prop (f p))) Σ-algebra-on-Ω : 𝓛-alg (Ω 𝓣) Σ-algebra-on-Ω = sum , k , ι where k : (P : Ω 𝓣) → sum 𝟙-is-prop (λ (_ : 𝟙) → P) = P k P = Ω-extensionality' pe fe 𝟙-lneutral ι : (P : 𝓣 ̇ ) (Q : P → 𝓣 ̇ ) (i : is-prop P) (j : (p : P) → is-prop (Q p)) (f : Σ Q → Ω 𝓣) → sum (Σ-is-prop i j) f = sum i (λ p → sum (j p) (λ q → f (p , q))) ι P Q i j f = Ω-extensionality' pe fe Σ-assoc private prod : {P : 𝓣 ̇ } → is-prop P → (P → Ω 𝓣) → Ω 𝓣 prod {P} i f = (Π p ꞉ P , f p holds) , Π-is-prop fe (λ p → holds-is-prop (f p)) Π-algebra-on-Ω : 𝓛-alg (Ω 𝓣) Π-algebra-on-Ω = prod , k , ι where k : (P : Ω 𝓣) → prod 𝟙-is-prop (λ (_ : 𝟙) → P) = P k P = Ω-extensionality' pe fe (≃-sym (𝟙→ fe)) ι : (P : 𝓣 ̇ ) (Q : P → 𝓣 ̇ ) (i : is-prop P) (j : (p : P) → is-prop (Q p)) (f : Σ Q → Ω 𝓣) → prod (Σ-is-prop i j) f = prod i (λ p → prod (j p) (λ q → f (p , q))) ι P Q i j f = Ω-extensionality' pe fe (curry-uncurry' fe fe) Σ-and-Π-disagree : ¬ ( {P : 𝓣 ̇ } (i : is-prop P) (f : P → Ω 𝓣) → (Σ p ꞉ P , f p holds) = (Π p ꞉ P , f p holds)) Σ-and-Π-disagree a = II where I = 𝟘 ≃⟨ ×𝟘 ⟩ 𝟘 × 𝟘 ≃⟨ idtoeq _ _ (a 𝟘-is-prop λ _ → (𝟘 , 𝟘-is-prop)) ⟩ (𝟘 → 𝟘) ≃⟨ ≃-sym (𝟘→ fe) ⟩ 𝟙 {𝓤₀} ■ II : 𝟘 II = ⌜ I ⌝⁻¹ ⋆ Σ-and-Π-algebra-on-Ω-disagree : Σ-algebra-on-Ω ≠ Π-algebra-on-Ω Σ-and-Π-algebra-on-Ω-disagree e = Σ-and-Π-disagree V where I : (λ {P} → sum {P}) = prod I = ap pr₁ e II : (P : 𝓣 ̇ ) → sum {P} = prod {P} II = implicit-happly I III : (P : 𝓣 ̇ ) (i : is-prop P) → sum {P} i = prod {P} i III P = happly (II P) IV : (P : 𝓣 ̇ ) (i : is-prop P) (f : P → Ω 𝓣) → sum {P} i f = prod {P} i f IV P i = happly (III P i) V : {P : 𝓣 ̇ } (i : is-prop P) (f : P → Ω 𝓣) → (Σ p ꞉ P , f p holds) = (Π p ꞉ P , f p holds) V {P} i f = ap pr₁ (IV P i f) \end{code}