Martin Escardo 25th October 2018. We show that the natural map into the lifting is an embedding. See the module Lifting.EmbeddingViaSIP for an alternative approach via the structure identity principle. \begin{code} {-# OPTIONS --safe --without-K #-} open import MLTT.Spartan module Lifting.EmbeddingDirectly (π£ : Universe) where open import UF.Base open import UF.Subsingletons open import UF.Subsingletons-FunExt open import UF.Embeddings open import UF.Equiv open import UF.FunExt open import Lifting.Construction π£ \end{code} Our strategy here to show that Ξ· is an embedding (has subsingleton fibers) is to exhibit it as the composite of two embeddings (the first of which is actually an equivalence). \begin{code} π : π€ Μ β π€ β π£ βΊ Μ π X = Ξ£ P κ π£ Μ , (P β X) Γ is-singleton P ΞΊ : {X : π€ Μ } β X β π X ΞΊ x = π , (Ξ» _ β x) , π-is-singleton ΞΆ : (X : π€ Μ ) (P : π£ Μ ) β (P β X) Γ is-singleton P β (P β X) Γ is-prop P ΞΆ X P (Ο , i) = Ο , singletons-are-props i πβπ : (X : π€ Μ ) β π X β π X πβπ X = NatΞ£ (ΞΆ X) Ξ·-composite : funext π£ π£ β funext π€ (π£ βΊ β π€) β {X : π€ Μ } β Ξ· οΌ πβπ X β ΞΊ Ξ·-composite fe fe' {X} = dfunext fe' h where h : (x : X) β (π , (Ξ» _ β x) , π-is-prop) οΌ (π , (Ξ» _ β x) , singletons-are-props (π-is-singleton)) h x = to-Ξ£-οΌ (refl , to-Γ-οΌ refl (being-prop-is-prop fe _ _)) \end{code} The fact that πβπ is an embedding can be proved by obtaining it as a combination of maps that we already know to be embeddings, using Γ-embedding, maps-of-props-are-embeddings, id-is-embedding, and NatΞ£-embedding.: \begin{code} ΞΆ-is-embedding : funext π£ π£ β (X : π€ Μ ) (P : π£ Μ ) β is-embedding (ΞΆ X P) ΞΆ-is-embedding fe X P = Γ-is-embedding id singletons-are-props id-is-embedding (maps-of-props-are-embeddings singletons-are-props (being-singleton-is-prop fe) (being-prop-is-prop fe)) πβπ-is-embedding : funext π£ π£ β (X : π€ Μ ) β is-embedding (πβπ X) πβπ-is-embedding fe X = NatΞ£-is-embedding (Ξ» P β (P β X) Γ is-singleton P) (Ξ» P β (P β X) Γ is-prop P) (ΞΆ X) (ΞΆ-is-embedding fe X) \end{code} That ΞΊ is an equivalence corresponds to the fact that the lifting of a type X with respect to the dominance "is-singleton" is equivalent to X itself. \begin{code} ΞΊ-is-equiv : propext π£ β funext π£ π£ β funext π£ π€ β {X : π€ Μ } β is-equiv (ΞΊ {π€} {X}) ΞΊ-is-equiv {π€} pe fe fe' {X} = qinvs-are-equivs ΞΊ (Ο , (ΟΞΊ , ΞΊΟ)) where Ο : {X : π€ Μ } β π X β X Ο (P , Ο , i) = Ο (center i) ΟΞΊ : {X : π€ Μ } (x : X) β Ο (ΞΊ x) οΌ x ΟΞΊ x = refl ΞΊΟ : (m : π X) β ΞΊ (Ο m) οΌ m ΞΊΟ (P , Ο , i) = u where t : π οΌ P t = pe π-is-prop (singletons-are-props i) (Ξ» _ β center i) unique-to-π s : (t : π οΌ P) β transport (Ξ» - β (- β X) Γ is-singleton -) t ((Ξ» _ β Ο (center i)) , π-is-singleton) οΌ Ο , i s refl = to-Γ-οΌ a b where a : (Ξ» x β Ο (center i)) οΌ Ο a = dfunext fe' (Ξ» x β ap Ο (π-is-prop (center i) x)) b : π-is-singleton οΌ i b = (singletons-are-props (pointed-props-are-singletons π-is-singleton (being-singleton-is-prop fe)) π-is-singleton i) u : π , (Ξ» _ β Ο (center i)) , π-is-singleton οΌ P , Ο , i u = to-Ξ£-οΌ (t , s t) ΞΊ-is-embedding : propext π£ β funext π£ π£ β funext π£ π€ β {X : π€ Μ } β is-embedding (ΞΊ {π€} {X}) ΞΊ-is-embedding pe fe fe' = equivs-are-embeddings ΞΊ (ΞΊ-is-equiv pe fe fe') \end{code} Finally, Ξ· is an embedding because it is equal to the composition of two embeddings: \begin{code} Ξ·-is-embedding : propext π£ β funext π£ π£ β funext π£ π€ β funext π€ (π£ βΊ β π€) β {X : π€ Μ } β is-embedding (Ξ· {π€} {X}) Ξ·-is-embedding pe fe fe' fe'' {X} = transportβ»ΒΉ is-embedding (Ξ·-composite fe fe'') (β-is-embedding (ΞΊ-is-embedding pe fe fe') (πβπ-is-embedding fe X)) \end{code}