J. A. Carr 8 July 2025.
The untruncated form of the at-most-two elements is equivalent
to the statement that Aut ฮฉ has exactly 1 or 2 elements
(and hence every element is either identity or negation)
\begin{code}
{-# OPTIONS --safe --without-K #-}
open import MLTT.Spartan
open import MLTT.Plus-Properties
open import UF.DiscreteAndSeparated
open import TypeTopology.SigmaDiscreteAndTotallySeparated
open import UF.Equiv hiding (_โ
_)
open import UF.FunExt
open import UF.Logic
open import UF.PropTrunc
open import UF.Subsingletons
open import UF.SubtypeClassifier hiding (ฮฉ)
open import Fin.Type
open import Fin.Topology
open import Fin.Pigeonhole
module Higgs.UntruncatedAtMostTwo
{๐ค : Universe}
(fe : Fun-Ext)
(pe : propext ๐ค)
(pt : propositional-truncations-exist)
where
open import Higgs.Rigidity fe pe
open import Higgs.InvolutionTheorem fe pe
open import Higgs.AutomorphismsOfOmega fe pe
open import Higgs.AutomorphismsOfOmegaWEM fe pe pt
open Conjunction
open Implication fe
open Universal fe
\end{code}
Assuming function extensionality, having an untruncated pigeonhole principle
reflects discreteness to the codomain.
The core method is to note that the pidgeonhole function must respect equality
of functions, so we produce a pair of functions, where equality of their results
holds if and only if the two elements of the codomain are equal.
\begin{code}
constantly : {๐ค ๐ฅ : Universe}
โ {X : ๐ค ฬ } {Y : ๐ฅ ฬ }
โ Y โ X โ Y
constantly y _ = y
almost-constantly-inner : {๐ค ๐ฅ : Universe}
โ {X : ๐ค ฬ } {Y : ๐ฅ ฬ }
โ (x' : X) โ Y โ Y โ (x : X)
โ ((x' ๏ผ x) + (x' โ x))
โ Y
almost-constantly-inner _ y' y _ (inl _) = y'
almost-constantly-inner _ y' y _ (inr _) = y
almost-constantly : {๐ค ๐ฅ : Universe}
โ {X : ๐ค ฬ } {Y : ๐ฅ ฬ }
โ is-discrete X
โ X โ Y โ Y โ X
โ Y
almost-constantly X-discrete x' y' y x =
almost-constantly-inner x' y' y x (X-discrete x' x)
almost-constantly-eq : {๐ค ๐ฅ : Universe}
โ {X : ๐ค ฬ } {Y : ๐ฅ ฬ }
โ (X-discrete : is-discrete X)
โ (x : X)
โ (y' y : Y)
โ almost-constantly X-discrete x y' y x ๏ผ y'
almost-constantly-eq X-discrete x y' y =
almost-constantly X-discrete x y' y x ๏ผโจ refl โฉ
almost-constantly-inner x y' y x (X-discrete x x) ๏ผโจ I โฉ
almost-constantly-inner x y' y x (inl refl) ๏ผโจ refl โฉ
y' โ
where
I : almost-constantly-inner x y' y x (X-discrete x x)
๏ผ almost-constantly-inner x y' y x (inl refl)
I = ap (almost-constantly-inner x y' y x)
(discrete-inl-refl X-discrete x)
almost-constantly-neq : {๐ค ๐ฅ : Universe}
โ {X : ๐ค ฬ } {Y : ๐ฅ ฬ }
โ (X-discrete : is-discrete X)
โ (x' x : X)
โ (y' y : Y)
โ (x' โ x)
โ almost-constantly X-discrete x' y' y x ๏ผ y
almost-constantly-neq X-discrete x' x y' y ฮฝ =
almost-constantly X-discrete x' y' y x ๏ผโจ refl โฉ
almost-constantly-inner x' y' y x (X-discrete x' x) ๏ผโจ I โฉ
almost-constantly-inner x' y' y x (inr ฮฝ) ๏ผโจ refl โฉ
y โ
where
I : almost-constantly-inner x' y' y x (X-discrete x' x)
๏ผ almost-constantly-inner x' y' y x (inr ฮฝ)
I = ap (almost-constantly-inner x' y' y x)
(discrete-inr fe X-discrete x' x ฮฝ)
almost-constantly-is-constant
: {๐ค ๐ฅ : Universe}
โ {X : ๐ค ฬ } {Y : ๐ฅ ฬ }
โ (X-discrete : is-discrete X)
โ (x' : X)
โ (y y' : Y)
โ y ๏ผ y'
โ constantly y ๏ผ almost-constantly X-discrete x' y' y
almost-constantly-is-constant {_} {_} {X} {Y} X-discrete x' y _ refl = dfunext fe III
where
I : constantly y x' ๏ผ y
I = refl
II : (x : X)
โ ((x' ๏ผ x) + (x' โ x))
โ almost-constantly X-discrete x' y y x ๏ผ y
II _ (inl refl) = almost-constantly-eq X-discrete x' y y
II x (inr ฮฝ) = almost-constantly-neq X-discrete x' x y y ฮฝ
III : (x : X) โ constantly y x' ๏ผ almost-constantly X-discrete x' y y x
III x = I โ II x (X-discrete x' x) โปยน
at-most-discrete-gives-discrete
: {๐ค ๐ฅ : Universe}
โ (X : ๐ค ฬ) (Y : ๐ฅ ฬ)
โ is-discrete X
โ ((f : X โ Y) โ f has-a-repetition)
โ is-discrete Y
at-most-discrete-gives-discrete X Y X-discrete f-ph y y' = V VI
where
repeat-indices : (X โ Y)
โ X ร X
repeat-indices f =
(ฮป (x , x' , _) โ (x , x'))
(f-ph f)
repeat-is-repeat : (f : X โ Y)
โ let (x , x') = repeat-indices f
in f x ๏ผ f x'
repeat-is-repeat f =
let (x , x' , _ , pf) = f-ph f
in pf
repeat-distinct : (f : X โ Y)
โ let (x , x') = repeat-indices f
in x โ x'
repeat-distinct f =
let (x , x' , pf , _) = f-ph f
in pf
fโ = constantly y
ixโ = repeat-indices fโ
fโ = almost-constantly X-discrete (prโ ixโ) y' y
ixโ = repeat-indices fโ
I : y ๏ผ y' โ ixโ ๏ผ ixโ
I e = ap repeat-indices
(almost-constantly-is-constant X-discrete (prโ ixโ) y y' e)
II : (x : X)
โ (prโ ixโ โ x)
โ y ๏ผ fโ x
II x ne = almost-constantly-neq X-discrete (prโ ixโ) x y' y ne โปยน
III : fโ (prโ ixโ) ๏ผ y'
III = almost-constantly-eq X-discrete (prโ ixโ) y' y
IV : ixโ ๏ผ ixโ โ y ๏ผ y'
IV e =
y ๏ผโจ II (prโ ixโ) (repeat-distinct fโ) โฉ
fโ (prโ ixโ) ๏ผโจ ap (fโ โ prโ) e โฉ
fโ (prโ ixโ) ๏ผโจ refl โฉ
fโ (prโ (repeat-indices fโ)) ๏ผโจ repeat-is-repeat fโ โปยน โฉ
fโ (prโ (repeat-indices fโ)) ๏ผโจ refl โฉ
fโ (prโ ixโ) ๏ผโจ ap (fโ โ prโ) (e โปยน) โฉ
fโ (prโ ixโ) ๏ผโจ III โฉ
y' โ
V : is-decidable (ixโ ๏ผ ixโ) โ is-decidable (y ๏ผ y')
V (inl e) = inl (IV e)
V (inr ne) = inr (ne โ I)
VI : is-decidable (ixโ ๏ผ ixโ)
VI = ร-is-discrete X-discrete X-discrete ixโ ixโ
\end{code}
We may write the untruncated form of the at-most-2 lemma in this form
\begin{code}ย
at-most-two-is-pigeonhole
: {๐ค : Universe}
โ {X : ๐ค ฬ}
โ ((x y z : X) โ (z ๏ผ x) + (x ๏ผ y) + (y ๏ผ z))
โ (f : Fin 3 โ X)
โ f has-a-repetition
at-most-two-is-pigeonhole at-most-2 f = II I
where
v1 v2 v3 : Fin 3
v1 = inr โ
v2 = inl (inr โ)
v3 = inl (inl (inr โ))
true-when-eq : Fin 3
โ Fin 3
โ ๐ค โบ ฬ
true-when-eq (inl (inl _)) (inl (inl _)) = ๐
true-when-eq (inl (inl _)) (inl (inr _)) = ๐
true-when-eq (inl (inl _)) (inr _) = ๐
true-when-eq (inl (inr _)) (inl (inl _)) = ๐
true-when-eq (inl (inr _)) (inl (inr _)) = ๐
true-when-eq (inl (inr _)) (inr _) = ๐
true-when-eq (inr _) (inl (inl _)) = ๐
true-when-eq (inr _) (inl (inr _)) = ๐
true-when-eq (inr _) (inr _) = ๐
v3-not-1 : v3 โ v1
v3-not-1 e = ๐-elim (transport (true-when-eq v3) e โ)
v1-not-2 : v1 โ v2
v1-not-2 e = ๐-elim (transport (true-when-eq v1) e โ)
v2-not-3 : v2 โ v3
v2-not-3 e = ๐-elim (transport (true-when-eq v2) e โ)
I : (f v3 ๏ผ f v1) + (f v1 ๏ผ f v2) + (f v2 ๏ผ f v3)
I = at-most-2 (f v1) (f v2) (f v3)
II : (f v3 ๏ผ f v1) + (f v1 ๏ผ f v2) + (f v2 ๏ผ f v3)
โ f has-a-repetition
II (inl e31) = ( v3 , v1 , v3-not-1 , e31 )
II (inr (inl e12)) = ( v1 , v2 , v1-not-2 , e12 )
II (inr (inr e23)) = ( v2 , v3 , v2-not-3 , e23 )
aut-ฮฉ-discrete-has-em
: is-discrete (Aut ฮฉ)
โ (๐ : Aut ฮฉ)
โ (๐ ๏ผ ๐๐) + (๐ โ ๐๐)
aut-ฮฉ-discrete-has-em aut-disc ๐ = aut-disc ๐ ๐๐
untruncated-at-most-two-iff-em
: ((f g h : Aut ฮฉ) โ (h ๏ผ f) + (f ๏ผ g) + (g ๏ผ h))
โ ((๐ : Aut ฮฉ) โ (๐ ๏ผ ๐๐) + (๐ โ ๐๐))
untruncated-at-most-two-iff-em = (FW , BW)
where
FW : ((f g h : Aut ฮฉ) โ (h ๏ผ f) + (f ๏ผ g) + (g ๏ผ h))
โ ((๐ : Aut ฮฉ) โ (๐ ๏ผ ๐๐) + (๐ โ ๐๐))
FW at-most-two = aut-ฮฉ-discrete-has-em
(at-most-discrete-gives-discrete
(Fin 3) (Aut ฮฉ)
Fin-is-discrete
(at-most-two-is-pigeonhole at-most-two))
I : {f g : Aut ฮฉ}
โ (f โ ๐๐)
โ (g โ ๐๐)
โ (f ๏ผ g)
I {f} f-not g-not = ((not-id-is-not f-not em) โ (not-id-is-not g-not em) โปยน)
where
em = ฮฉ-automorphism-distinct-from-๐๐-gives-EM (f , f-not)
II : {f g h : Aut ฮฉ}
โ ((f ๏ผ ๐๐) + (f โ ๐๐))
โ ((g ๏ผ ๐๐) + (g โ ๐๐))
โ ((h ๏ผ ๐๐) + (h โ ๐๐))
โ (h ๏ผ f) + (f ๏ผ g) + (g ๏ผ h)
II (inl ef) (inl eg) (_ ) = inr (inl (ef โ eg โปยน))
II (inl _ ) (inr neg) (inr neh) = inr (inr (I neg neh))
II (inl ef) (inr neg) (inl eh) = inl (eh โ ef โปยน)
II (inr _ ) (inl eg) (inl eh) = inr (inr (eg โ eh โปยน))
II (inr nef) (inr neg) (_ ) = inr (inl (I nef neg))
II (inr nef) (inl _ ) (inr neh) = inl (I neh nef)
BW : ((๐ : Aut ฮฉ) โ (๐ ๏ผ ๐๐) + (๐ โ ๐๐))
โ ((f g h : Aut ฮฉ) โ (h ๏ผ f) + (f ๏ผ g) + (g ๏ผ h))
BW em f g h = II (em f) (em g) (em h)
\end{code}ย